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A Note to the (Potential) Reader of M.A. Armstrong

I think this is a great book. But from a user’s perspective, I’m afraid a lot of people never get through chapter one. At
issue are Armstrong’s seemingly casual approach and his initial and confusing defnition of topology using “neighborhoods”.
Doing things that way gets confusing real fast, particularly (1.3) (d) on page 13. I imagine some readers are turned away at
this point, frustrated by the apparent complexity of the subject.

But happily things become much simpler and clearer starting in chapter 2. Chapter 2 basically starts over, doing things
the “right” way (as opposed to the “intuitive” way of chapter 1). The author’s intention was obviously to introduce the subject
by somewhat informally developing some motivation and intuition. And if you’re able to overcome the initial confusions
relating to “neighborhoods”, then he definitely does achieve a decent overview, which serves as a nice starting point for
studying topology. The reader should be patient and try to get the general concepts without buckling under the weight of the
details of (1.3).

This won’t cost you anything, because for the most part everything starts back over in chapter 2 where the concept of a
“topology” is defined anew in much simpler terms. There are a few exercises to show the two approaches are equivalent (you
can read their solutions here in these notes), but they’re not that critical. Just read chapter one as best you can, after reading a
few chapters you can go back and review chapter 1 and it will make a lot more sense.

If you find any mistakes in these notes, please do let me know at one of these email addresses:

ggrant543@gmail.com or greg@grant.org or ggrant@pcbi.upenn.edu
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Chapter 1 - Introduction
Notes

Page 8. Armstrong presents a formula for the area of Q as α1 +α2 + · · ·+αk − (n−2)π as if it is obvious. This is NOT actually
supposed to be obvious.

Page 14, Example 2. He says the axioms for a topology are easily checked. This is Chapter 1, Problem 19.

Page 14, Example 3. It is stated that the ”inverse is not continuous” and we are asked ”Why not?” This is Chapter 1, Problem
17.

Page 14, Example 4. We are asked to ”Check that radial projection π gives a homeomorphism” in Fig. 1.8. This is Chapter 1,
Problem 20.

Page 14, Example 6. We are asked to why the finite complement topology on R cannot be given by a metric. Suppose R (with
finite complement topology) is a metric space with metric d. Let x, y ∈ R and let D = d(x, y) be the distance between x and y.
Let Bx be the set of points that are strictly less than D/2 units ditsance from x and let By be the set of points that are strictly
less than D/2 units ditsance from y. (All distances mentioned are with respect to d, not to the typical distance in R.) Then
Bx and By must be non-empty and disjoint. But in the finite complement topology no two non-empty open sets can be disjoint.

Problems

Problem 1. Prove that v(T ) − e(T ) = 1 for any tree T .

Solution: Any tree can be obtained by starting with a single edge and then attaching edges one at a time so that the graph is
connected at each step. We will denote a partial tree by T ′. Since it is a tree, each attachment adds one edge and one vertex.
Therefore each attachment after the first does not change v(T ′) − e(T ′) (where T ′ is the partial tree as built so far). Only the
first edge is different. The first edge introduces one edge and two vertices. Therefore at step one v(T ′)− e(T ′) = 1 and adding
each additional edge does not change it further. Therefore v(T ) − e(T ) = 1 for the whole tree.

Problem 2. Even better, show that v(Γ) − e(Γ) ≤ 1 for an graph Γ, with equality precisely when Γ is a tree.

Solution: We assume the graph is connected, otherwise it is obviously false. In the same way as before we can build the graph
edge by edge. The first edge gives v(T ′)− e(T ′) = 1. Since we add edges so that T ′ is always connected, each additional edge
adds exactly one edge and at most one additional vertex. Therefore v(T ′) − e(T ′) is adjusted at each step by either 0 or −1.
So the final sum v(T ) − e(T ) cannot be greater than one.

If the graph is not a tree then some edge must connect two existing vertices as we build T . Therefore at some step we will
add −1 and the final sum can not be greater than zero.

Problem 3. Show that inside any graph we can always find a tree which contains all the vertices.

Solution: If a graph has a cycle, then any edge in the cycle can be removed without causing it to become disconnected. To
see this suppose an edge in the cycle connects vertices A and B. Suppose C and D are any two nodes. Connect them by a
path in the original graph. Now if that path passes through the edge connecting A and B, it can be diverted around the cycle to
get from A to B the long way. This path is still valid in the graph with the edge connecting AB removed. Therefore there is a
path connecting C and D in the modified graph. So the graph remains connected. Now as long as there are cycles, continue to
remove edges until there are no more cycles. The remaining graph is connected with no cycles and therefore must be a tree.

Problem 4. Find a tree in the polyhedron of Fig. 1.3 which contains all the vertices. Construct the dual graph Γ and sohw
that Γ contains loops.
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Solution:

The tree that hits every vertex is shown in red.

The dual graph Γ is shown in blue with the loops being shown in green. There are two loops that connect at a point.

Problem 5. Having done Problem 4, thicken both T and Γ in the polyhedron. T is a tree, so thickening it gives a disc. What
do you obtain when you thicken Γ?

Solution: Γ is basically two loops connected at a point, with some other edges connected that do not make any more loops.
So thickening should procduce something homeomorphic to what is shown in Problem 11 (b) (right). What is called ”Two
cylinders glued together over a square patch”.

Problem 6. Let P be a regular polyhedron in which each face has p edges and for which q faces meet at each vertex. Using
Euler’s formula prove that

1
p

+
1
q

=
1
2

+
1
e
.
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Solution: Every edge in a polyhedron has two faces. Each face has p edges so f p is twice the total number of edges. So
f p = 2e. Therefore f = 2e

p . Now each face has p vertices and each vertex is in q faces. So v =
p f
q . Euler’s formula says

v − e + f − 2. Therefore
2e
q
− e +

2e
p

= 2.

Divide through by 2e to get the result.

Problem 7. Deduce from Problem 6 that there are only five regular polyhedra.

Solution: Clearly p ≥ 3. Suppose p ≥ 6. Then

1
2

+
1
e

=
1
p

+
1
q
≤

1
6

+
1
q
.

Therefore
1
3
<

2
6

+
1
e
≤

1
q
.

Therefore q < 3. But q must be at least 3 to make a polyhedron. Therefore it is impossible that p ≥ 6.

We will show only five cases satisfy p ≤ 5. Suppose p = 5. Then

1
5

+
1
q

=
1
2

+
1
e
.

Therefore
1
q

=
3
10

+
1
e
≥

3
10
.

Therefore q ≤ 10
3 . Since q is an integer that must be at least 3 to make a coherent polyhedron, it must be that q is exactly 3. In

this case e = 30. This is the dodecahedron, the faces are pentagons and each vertex touches 3 faces. There are 12 faces.

Now suppose p = 4. Then
1
4

+
1
q

=
1
2

+
1
e
.

So
1
q

=
1
4

+
1
e
>

1
4
.

Therefore q < 4. Therefore q = 3. So the only regular polyhedron with p = 4 is the cube.
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Now suppose p = 3. In this case
1
3

+
1
q

=
1
2

+
1
e
.

So
1
q

=
1
6

+
1
e
>

1
6
.

Therefore q = 3, 4 or 5. If q = 3 then e = 6 and f = 4. This is a tetrahedron, a pyramid with triangular base.

If q = 4 then e = 12 and f = 8. This is the octahedron, two pyramids with square bases, connected by their bases.

If q = 5 then e = 30 and f = 20. This is the regular icosahedron.

Problem 8. Check that v − e + f = 0 for the polyhedron shown in Fig. 1.3. Find a polyhedron which can be deformed into a
prezel (see Fig. 1.23c) and calculate its Euler number.

Solution: For the polyhedron in Fig. 1.3, v = 20, e = 40, f = 20. Therefore v − e + f = 0. The following is basically a donut
with two holes, i.e. a ”pretzel”:
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It has 38 faces (10 on the top, 10 on the bottom, 10 inside the hole, and 8 around the outside sides). It has 76 edges (29 on the
top, 29 on the bottom, 10 vertical ones inside the holes and 8 vertical ones around the outside sides), and it has 36 verticies
(18 on the top, 18 on the bottom). Therefore v − e + f = −2.

Problem 9. Borrow a tennis ball and observe that its surface is marked out as the union of two discs which meet along their
boundaries.

Solution: Ok, this is obvious.

Problem 10. Find a homeomorphism from the real line to the open interval (0, 1). Show that any two open intervals are
homeomorphic.

Solution: Let y = 2x−1
x(1−x) . Then y : (0, 1) → R is a continuous function. We will show it is a homeomorphism by finding a

continuous inverse. Solving for x we get

x =


y−2−
√

y2−4
2y , y < 0

1/2, y = 0
y−2+
√

y2−4
2y , y > 0

Clearly x is a continuous function of y at y , 0. The left and right limits of y at y = 0 both converge to 1/2 by L’Hospital’s rule.
x and y are inverses of each other. Therefore they are homeomorphisms. Note that x restricted to (1/2, 1) is a homemorphism
from (1/2, 1) to (0,∞). The map x 7→ −x is a homemorphism from (0,∞) to (−∞, 0).

Now let (a, b) be any interval with −∞ < a, b < ∞. Then y = (b− a)x + a is a homeomorphism from (0, 1) to (a, b). Therefore
(0, 1) is homemorphic to (a, b) for any finite a and b and also to (0,∞) and (−∞, 0). Then for any finite b, x 7→ x + b is a
homeomorphism from (0,∞) to (b,∞). And for finite a, x 7→ x − a is a homemorphism from (−∞, 0) to (−∞, a).

Thus in all cases all intervals (a, b) are homemorphic.

Problem 12. ’Stereographic projection’ π from the sphere minus the north pole to the plane is shown in Fig. 1.24. Work out
a formula for π and check that π is a homeomorpism. Notice that π provides us with a homeomorphism from the sphere with
the north and south poles removed to the plane minus the origin.

Working this out in two dimensions is a good way to get the idea. In general the following formulas give the projection and
its inverse:

(X,Y) =

( x
1 − z

,
y

1 − z

)
and

(x, y, z) =

(
2X

1 + X2 + Y2 ,
2Y

1 + X2 + Y2 ,
−1 + X2 + Y2

1 + X2 + Y2

)
Problem 13. Let x and y be points on the sphere. Find a homeomorphism of the sphere with itself which takes x to y. Work
out the same Problem with the sphere replaced by the plane and by the torus.
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Solution:
The Sphere The special orthogonal group SO(n) are rotations of n space given by square n × n matrices M with det(M) = 1
and MMT = I. These are length (and angle) preserving transformations. An orthogonal matrix therefore takes the unit sphere
to itself. The columns are orthogonal unit vectors. Let x be any point on the unit sphere. Extend {x} to an orthonormal basis
and make a matrix R from these vectors with x as the first column. Then this matrix takes the first standard basis vector e1
to x. Likewise there is an orthogonal matrix S that takes e1 to y. Then S R−1 is a transformation that takes x to y. Linear
transformations are continuous. Things in SO(n) are invertible, so give homeomorphisms.

The Plane Let (x, y), (z,w) ∈ R × R. Consider the map (a, b) 7→ ((x + z) − a, (y + w) − b). Then (x, y) 7→ (z,w). Since the map
is linear, it is continuous with continous inverse. Therefore it is a homeomorphism that takes an arbitrary point in the plane to
another arbitrary point in the plane.

The Torus Consider the torus as T = S 1 × S 1. Let (x, y), (z,w) ∈ T . We know from The Sphere result above that there’s
a homemorphism f of S 1 that takes x to z and another homeomorphism g that takes y to w. Then f × g : T → T is a
homeomorphism that takes (x, y) to (z,w).

Problem 14. Make a Möbius strip out of a rectangle of paper and cut it along its central circle. What is the result?

Solution: The result is a strip with one full twist, so it now has two sides and the boundary is homemorphic to two separate
loops.

Problem 15. Cut a Möbius strip along the circle which lies halfway between the boundary of the strip and the central circle.
Do the same for the circle which lies one-third of the way in from the boundary. What are the resulting spaces?

Solution: The first exercise gives two interlocking loops, one (the wider and shorter one) is a Möbius strip and the other
(narrower and twice as long) is a loop with two full twists. The second exercise seems to have done basically the same thing,
it also gives two interlocking loops, one (wider and shorter) is a Möbius strip, the other (narrower and two times as long) is a
loop with two full twists.

Problem 16. Now take a strip which has one full twist in it, cut along its central circle and see what happens.

Solution: I get two interlocking loops, each with one full twist.

Problem 17. Define f : [0, 1) → C by f (x) = e2πix. Prove that f is one-to-one, onto and continuous. Find a point in [0, 1)
and a neighborhood N of x in [0, 1) such that f (N) is not a neighborhood of f (x) in C. Deduce that f is not a homeomorphism.

Solution: 2πx is the angle of the complex number e2πix. Since there are 2π radians in a full 360o angle, if x, y ∈ [0, 1) and
e2πix = e2πiy, then x = y. Therefore f is one-to-one. Similarly, as x ranges from 0 to 1, 2πx ranges from 0 to 2π. Therefore f
is onto. Take an open ball B in the complex plane C. Then B ∩C is either the whole circle or an open ended arc of the circle.
Therefore f −1(B) is either the whole interval, or an open subinterval, or possibly [0, α) ∪ (β, 1). In all cases an open subset of
[0, 1). Therefore f is continuous. Now [0, 1/2) is an open neighborhood of 0 in [0, 1). But f ([0, 1/2)) equals C intersected
with the upper half plane minus the single point z = −1. This is not a neighborhood of z = 1 ∈ C because any open ball
around z = 1 must contain numbers in the lower half plane. Therefore f cannot be a homeomorphism.

Problem 19. Let X be a topological space and let Y be a subset of X. Check that the so-called subspace topology is indeed a
topology on Y .

Solution: We must show it satisfies the four axoms of (1.3) (page 13). The neighborhoods of Y are N ∩ Y where N is a
neighborhood of X. If y ∈ Y then the neighborhoods of y are N ∩ Y where N is a neighborhood of y in X. Since N is a
neighborhood of y in X, it satisfies (a) and therefore y ∈ N. Also y ∈ Y . Therefore y ∈ N ∩ Y . So the neighborhoods of Y
satisfy (a). Now suppose N ∩ Y and M ∩ Y are two neighborhoods of y in Y , where N and M are neighborhoods in X. Then
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(N ∩ M) ∩ Y = (N ∩ Y) ∩ (M ∩ Y) is a neighborhood of y in Y . Therefore the neighborhoods of Y satisfy (b). If N ∩ Y is a
neighborhood of y (N a neighborhood in X) and U is a subset of Y which contains N ∩ Y then N ∪ U is a subset of X that
contains N so N∪U is a neighborhood of X, so (N∪U)∩Y = (N∩Y)∪ (U∩Y) = U∩Y = U. Therefore U is a neighborhood
of y in Y . Therefore the neighborhoods satisfy (c). Now suppose N ∩ Y is a neighborhood of y in Y (N a neighborhood in X).

Let
o

(N ∩ Y) be the interior of N ∩ Y in Y . We must show
o

(N ∩ Y) is a neighborhood of y in Y . Now a ∈
o

(N ∩ Y)⇔ N ∩ Y is a

neighborhood of a in Y ⇔ N is a neighborhood of a in X⇔ a ∈
o

(N) in X. So
o

(N ∩ Y) =
o
N ∩ Y . So

o
(N ∩ Y) is a neighborhood

of y in Y . Therefore the neighborhoods satisfy (d).

Problem 20. Prove that the radial projection shown in Fig. 1.8 is a homeomorphism from the surface of the tetrahedron to
the sphere. (Both spaces are assumed to have the subspace topology from E3.

Solution: Assume the polyhedron P is cenetered at the origin in E3. The map f : v 7→ 1
||v|| · v takes points on the polyhedra to

the surface of the unit sphere S 2. If vn → v in P, then vn is never zero, and 1
||vn ||
· vn →

1
||v|| · v. Therefore f is continuous. Every

ray starting at the origin passes exactly once through the polyhedron and the sphere. Therefore f is one-to-one and onto. If U
is an open set in S 2 then let Ũ be the set of points p in E3 such that p is not (0, 0, 0) and p lies on a ray that passes through the
origin and whose point of intersection with S 2 is in U. Then Ũ is an open set in E3 and Ũ ∩ S 2 = U. Now Ũ ∩ P = f −1(U)
and therefore f −1(U) is open in P. Therefore f is continuous. The exact same argument, but switching the roles of P and S 2

show that f −1 is continuous. Therefore, f is a homeomorphism.

Problem 21. Let C denote the unit circle in the complex plane and D the disc which it bounds. Given two points x, y ∈ D−C,
find a homeomorphism from D to D which interchanges x and y and leaves all points of C fixed.

Solution: This is more or less intuitively obvious. But writing down an explicit function is not so easy. First note that for any
a ∈ C, the function f (z) = z−a

1−Az
takes S 1 to itself. To see this suppose |z| = 1. then∣∣∣∣∣ z − a

1 − az

∣∣∣∣∣ =

∣∣∣∣∣ z − a
zz − az

∣∣∣∣∣
=

∣∣∣∣∣ z − a
(z − a)z

∣∣∣∣∣
=

∣∣∣∣∣ z − a
z − a

∣∣∣∣∣ 1
|z|

= 1

If |a| < 1 then the denominator never vanishes so this is a continuous function on D. Also, f (0) = −a, so if |a| < 1 then since
f takes C to itself and 0 maps to −a ∈ (D − C), f must take all of D to itself. The inverse f −1 is therefore also a continuous
function from D to D that takes C to C. Now suppose x, y ∈ C with |x| < 1 and |y| < 1, let

f1(z) =
z − x

1 − x̄z

and
f2(z) =

z − ty1

1 − tȳ1z

where y1 = f1(y) and t =
1−
√

1−|y1 |
2

|y1 |
2 . As shown above, both f1 and f2 take C to itself. Finally let

g(z) = zei(1−|z|)π/(1−|x2 |)

where x2 = f2(0). Then g(x2) = −x2 and g(−x2) = x2 and g(z) = z ∀ z ∈ C. Since z 7→ |z| is continuous, g is built up from
sums, products and compositions of continuous functions and therefore g is continuous.

The function f −1
1 f −1

2 g f2 f1 is therefore a continuous function from D to D that switches x and y and fixes C.
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Problem 22. With C,D as above (in Problem 21), define h : D −C → D −C by

h(0) = 0

h(reiθ) = r exp
[
i
(
θ +

2πr
1 − r

)]
Show that h is a homeomorphism, but that h cannot be extended to a homeomorphism from D to D. Draw a picture which
shows the effect of h on a diameter of D.

Solution: The function h restricted to a circle of radius r acts by rotation of 2πr/(1 − r) radians. Now 2πr/(1 − r) → ∞
as r → 1, so as the circle radius grows towards one, it gets rotated to greater and greater angles approaching infinity. Thus
intuitively it’s pretty obvious this could not be extended to the boundary.

Now, we can think of (r, θ) as polar coordinates in R2. And the topology on C is the same as that on R2. Thus as a function of
two variables r and θ this is just a combination of continuous functions by sums, products, quotients and composition. Since
the only denominator involved does not vanish for |r| < 1, this is a continuous function of r and θ on D which is clearly onto.
Since it is a simple rotation on each circle of radius r, it is also clearly one-to-one. The inverse is evidently

h−1(0) = 0

h−1(reiθ) = r exp
[
i
(
θ −

2πr
1 − r

)]
Now, let rn = n

n+2 for n odd and rn = n−1
n for n even. Then for n odd, r

1−r = n
2 , and for n even r

1−r = n − 1. Therefore
exp

[
i
(

2πrn
1−rn

)]
equals 1 if r is even and −1 if r is odd. Now, rn → 1. So if h could be extended to all of D we must have

h(1) = lim h(rn). But h(rn) does not converge, it alternates between 1 and −1. Therefore, there is no way to extend h to C to
be continuous.

Problem 23. Using the intuitive notion of connectedness, argue that a circle and a circle with a spike attached cannot be
homeomorphic (Fig. 1.26.)

Solution: In the circle, if we remove any one point what remains is still connected. However in the circle with a spike attached
there is one point we can remove that renders the space not-connected. Since this property of being able to remove a point and
retain connectedness must be a topological property preserved by homeomorphism, the two spaces cannot be homeomorphic.

Problem 24. Let X,Y be the subspace of the plane shown in Fig. 1.27. Under the assumption that any homeomorphism
from the annulus to itself must send the points of the two boundary circles among themselves, argue that X and Y cannot be
homeomorphic.

Solution: The two points that connect the two spikes to the two boundary circles in X must go to the two points that connect
the two spikes to the boundary circles in Y , because those are the only two points on the boundary circles that can be removed
to result in a disconnected space, and because by assumption the circles go to the circles. Since the two poins lie on the same
circle in Y but on different circles in X, some part of the outer circle in Y must go to the outer circle in X and the rest must
go to the inner circle in X. But then some part of the outer circle in Y must go to the interior of X. I’m not sure exactly how
Armstrong expects us to prove this but it basically follows from the intermediate value theorem, applied to the two coordinates
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thinking of these shapes as embedded in R2.

Problem 25. With X and Y as above, consider the following two subspaces of E3:

X × [0, 1] = {(x, y, z) | (x, y) ∈ X, 0 ≤ z ≤ 1},

Y × [0, 1] = {(x, y, z) | (x, y) ∈ Y, 0 ≤ z ≤ 1}.

Convince yourself that if these spaces are made of rubber then they can be deformed into one another, and hense that they are
homeomorphic.

Solution: With the extra dimension, the squareness can be continuously deformed so that it is a solid torus, with two flat
rectangular shapes sticking off. One has both rectangles pointing out and one has one pointing out and the other pointing in.
Since the torus is round, the first space made from X can be rotated at the location where the inner rectangle is a full half
turn to point the rectangle out, and as parallel slices (discs) of the torus move away from where the rectangle is attached, the
rotation gradually gets less and less until it becomes zero before reaching the other rectangle. In this way the inner rectangle
can be rotated to point out without affecting the other rectangle and with a gradual change in rotation angle between them
guaranteeing the operation is continuous.

Problem 26: Assuming you have done Problem 14, show that identifying diametrically opposite points on one of the bound-
ary circles of the cylinder leads to the Möbius strip.

Solution: Well, it was exactly diametrically opposite points that were connected before I cut the Möbius strip in half. There-
fore, doing that operation backwards would have to restore the Möbius strip. Interestingly, yes, this shape before identifying
is homeomorphic to the cylinder. Very cool.
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Chapter 2 - Continuity
Section 2.1 - Open and Closed Sets

Notes

Page 31. TYPO: First line of page, should be x ∈ B ⊆ N.

Page 31. TYPO: in Problem 4(b), missing comma after the 2.

Problems 2.1

Problem 1. Verify each of the following for arbitrary subsets A, B of a space X:
(a) A ∪ B = A ∪ B; (b) A ∩ B ⊆ A ∩ B; (c) Ā = A;

(d) (A ∪ B)◦ ⊇
◦

A ∪
◦

B; (e) (A ∩ B)◦ =
◦

A ∩
◦

B; (f) (
◦

A)◦ =
◦

A.
Show that equality need not hold in (b) and (d).

Solution:

(a) A and B are closed by Theorem 2.3. Thus A∪B is closed. Now A ⊆ A and B ⊆ B. Therefore A∪B is a closed set containing
A ∪ B. By Theorem 2.3 A ∪ B is the smallest closed set containing A ∪ B, thus it must be that A ∪ B ⊆ A ∪ B. Conversely,
A ∪ B is a closed set that contains A, so A ∪ B ⊇ A. Similarly A ∪ B ⊇ B. Thus A ∪ B ⊇ A ∪ B. Thus A ∪ B = A ∪ B.

(b) A is a closed set that contains A ∩ B, so A ∩ B ⊆ A. Likewise A ∩ B ⊆ B. Thus A ∩ B ⊆ A ∩ B.

To see that equality does not hold, let A = Q and let B = R − Q. Then A ∩ B = ∅, so A ∩ B = ∅. But A = R and B = R, so
A ∩ B = R.

(c) Ā is the smallest closed set containing A by Corrolary 2.4, and A is closed by Theorem 2.3, that contains A. Thus A = Ā.

(d) Let x ∈
◦

A∪
◦

B. Assume wlog that x ∈
◦

A. Then there is an open set U ⊆ A s.t. x ∈ A. But then x ∈ U ⊆ A∪B. So x ∈
◦

A∪
◦

B.

Thus
◦

A ∪
◦

B ⊆ (A ∪ B)◦.

To see that equality does not hold, let A = Q and let B = R − Q. Then
◦

A = ∅ and
◦

B = ∅. And A ∪ B = R, so (A ∪ B)◦ = R.

Therefore (A ∪ B)◦ = R but
◦

A ∩
◦

B = ∅.

(e) Let U be an open set in A ∩ B. Then U ⊆ A and U ⊆ B. Thus (A ∩ B)◦ ⊆
◦

A ∩
◦

B. Conversely suppose x ∈
◦

A ∩
◦

B. Then ∃

open sets U and V s.t. x ∈ U ⊆ A and x ∈ V ⊆ B. Then U ∩ V is open and x ∈ U ∩ V ⊆ A ∩ B. Thus (A ∩ B)◦ ⊇
◦

A ∩
◦

B. Thus

(A ∩ B)◦ =
◦

A ∩
◦

B.

(f) Clearly (
◦

A)◦ ⊆
◦

A. Let x ∈
◦

A. Then ∃ an open set U s.t. x ∈ U ⊆ A. Now
◦

A is a union of open sets so is open. Let

V =
◦

A ∩ U. Then x ∈ V ⊆
◦

A. Therefore x ∈ (
◦

A)◦. Thus
◦

A ⊆ (
◦

A)◦. Thus
◦

A = (
◦

A)◦.

Problem 2. Find a family of closed subsets of the real line whose union is not closed.

Solution: For each n ∈ N let An = [0, 1 − 1
n ]. Then ∪nAn = [0, 1) which is not closed.

Problem 3. Specify the interior, closure, and frontier of each of the following subsets of the plane:
(a) {(x, y) | 1 < x2 + y2 ≤ 2}; (b) E2 with both axes removed;
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(c) E2 − {(x, sin(1/x)) | x > 0}.

Solution:

(a) The interior is {(x, y) | 1 < x2 + y2 < 2}. The closure is {(x, y) | 1 ≤ x2 + y2 ≤ 2}. The fronteir is {(x, y) | x2 + y2 =

1} ∪ {(x, y) | x2 + y2 = 2}.

(b) The set is already open so it is equal to its interior. The closure is all of E2. The frontier is exactly the union of the two axes.

(c) This is similar to (b). The set is open so equal to its interior. The closure is all of E2. The frontier is exactly the curve
{(x, sin(1/x)) | x > 0}.

Problem 4. Find all limit points of the following subsets of the real line:
(a) {(1/m) + (1/n) | m, n = 1, 2, . . . }; (b) {(1/n) sin n | n = 1, 2, . . . }.

Solution:

(a) Zero is the limit of 1
n + 1

n as n→ ∞. And 1
n is the limit of 1

n + 1
m as m→ ∞. Thus A = {0} ∪ { 1n | n ∈ N} are all limit points.

We will show these are the only limit points.

Note that Ac can be written as a union of open intervals. Thus Ac is open. Let x < A. Then there is an ε > 0 such that the
interval [x − ε, x + ε] ∩ A = ∅ (since we can find an open interval (x − δ, x + δ) that satisfies this, we can also find a closed
interval, just let ε = δ/2).

Therefore, the sum 1
n + 1

m , with least one of 1
n or 1

m less than ε/2, must be at a distance of at least ε/2 from x. So the only such
numbers in the interval [x − ε/2, x + ε/2] must have 1

n ≥ ε/2 and 1
m ≥ ε/2. So n ≤ 2/ε and m ≤ 2/ε. Hence there are only a

finite number of numbers of the form 1
n + 1

m in the interval [x − ε/2, x + ε/2]. Thus x is not a limit point.

(b) A basic calculus result says 1
n → 0. Since −1 ≤ sin(x) ≤ 1 ∀ x, 1

n sin(n) → 0. Also if a sequence an converges to L then
all subsequences converge to L, thus the limit L can be the only limit point of the sequence, when considered as a set.

Problem 5. If A is a dense subset of a space X, and if O is open in X, show that O ⊆ A ∩ O.

Solution: Suppose x ∈ O, x < A ∩ O. Since A ∩ O is closed, ∃ open U s.t. x ∈ U and U ∩ (A ∩ O) = ∅. But then
U ∩ (A ∩ O) = ∅. And x ∈ U ∩ O⇒ U ∩ O , ∅. It is also open, so A ∩ (U ∩ O) = ∅ ⇒ A not dense.

Problem 6. If Y is a subspace of X, and Z a subspace of Y , prove that Z is a subspace of X.

Solution: The open sets in Y are exactly the sets O ∩ Y where O is open in X. The open sets in A as a subspace of Y are
therefore sets of the form A ∩ (Y ∩ O) where O is open in X. But A ⊆ Y , so A ∩ (Y ∩ O) = A ∩ O. Therefore the open sets in
A as a subspace of X are exactly the same as the open sets of A as a subspace of Y .

Problem 7. Suppose Y is a subspace of X. Show that a subset of Y is closed in Y if it is the intersection of Y with a closed set
in X. If A is a subset of Y , show that we get the same answer whether we take the closure of A in Y , or intersect Y with the
closure of A in X.

Solution: In the following, all complements are taken in X. Suppose A ⊆ Y is closed in Y . Then Y − A is open in Y so
Y − A = Y ∩ Ac = Y ∩ O for some O open in X. Now since A ⊆ Y , x ∈ A⇔ x ∈ Y and x < Y ∩ Ac ⇔ x ∈ Y and x < Y ∩ O⇔
x ∈ Y and x < O⇔ x ∈ Y ∩ Oc. Therefore A = Y ∩ Oc.

Now let AY be the closure of A in Y and let AX be the closure of A in X. We know by the above that AY = Y ∩ C where C is
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closed in X. Since C is a closed set in X contianing A, AX ⊆ C. So AY = Y∩C ⊇ Y∩AX . Now by the first part of this problem,
Y ∩ AX is a closed set in Y . It also contains A, so it must contain AY . So AY ⊆ Y ∩ AX . Thus we have shown AY = Y ∩ AX .

Problem 8. Let Y be a subspace of X. Given A ⊆ Y , write
◦

AY for the interior of A in Y , and
◦

AX for the interior of A in X.

Prove that
◦

AX ⊆
◦

AY , and give an example to show the two may not be equal.

Solution: Let x ∈
◦

AX . Then x ∈ U ⊆ A where U is open in X. Since A ⊆ Y , x ∈ U ∩ Y ⊆ A, and U ∩ Y is open in Y , it follows

that x ∈
◦

AY . Therefore
◦

AX ⊆
◦

AY .

Let X = R and let Y = Z and A = {0}. Then
◦

AX = ∅. But every point of Y is open in the subspace topology of Y . Therefore
◦

AY = {0}. Therefore
◦

AX (
◦

AY .

Problem 9: Let Y be a subspace of X. If A is open (closed) in Y , and if Y is open (closed) in X, show that A is open (closed)
in X.

Solution: Suppose A ⊆ Y ⊆ X and A open in Y . Then A = Y ∩ U where U is open in X. The intersection of two open sets is
open, so if Y is open in X then A is open in X. Similarly, if A ⊆ Y ⊆ X and A closed in Y , then A = Y ∩ C where C is closed
in X (by exercise 7). The intersection of two closed sets is closed, so if Y is closed in X then A is closed in X

Problem 10: Show that the frontier of a set always contains the frontier of its interior. How does the frontier of A ∪ B relate
to the frontiers of A and B?

Solution: Let x be in the frontier of
◦

A. Then by definition x ∈
◦̄

A ∩
◦̄

A
c
. We need to show x ∈ A ∩ Āc. Since

◦

A ⊆ A, x ∈
◦̄

A⇒
x ∈ A. It remains to show x ∈ Āc. Suppose x < Ac, then we just need to show x is a limit point of Ac. Let U be an open set

with x ∈ U. Then U ∩ Ac , ∅ because otherwise x ∈ U ⊆
◦

A which would imply x is not a limit point of
◦

A
c
; but since x ∈

◦̄

A
c

it

would then have to be that x ∈
◦

A
c

which would imply x <
◦

A, but x ∈ U ⊆
◦

A. Therefore U ∩ Ac , ∅ which implies x is a limit
point of Ac. Thus x ∈ Āc.

For part two of the problem, let Fr(A) be the frontier of A.

Claim: Fr(A ∪ B) ⊆ Fr(A) ∪ Fr(B).

Let x ∈ Fr(A ∪ B). Then

x ∈ A ∪ B ∩ (A ∪ B)c = (A ∪ B) ∩ Ac ∩ Bc (by Problem 1a and DeMorgan’s Law)

⊆ (A ∪ B) ∩ (Āc ∩ B̄c) (by Problem 1b)

= (A ∩ Āc ∩ B̄c) ∪ (B ∩ Āc ∩ B̄c) (intersection distributes across union)

⇒ x ∈ A ∩ Āc ∩ B̄c or x ∈ B ∩ B̄c ∩ Āc

⇒ x ∈ A ∩ Āc or x ∈ B ∩ B̄c

⇒ x ∈ Fr(A) or x ∈ Fr(B)
⇒ x ∈ Fr(A) ∪ Fr(B)

Let X = R and A = Q. Then A = R and Āc = R. So Fr(A) = R and Fr(Ac) = R. So Fr(A) ∪ Fr(Ac) = R. But A ∪ Ac = R and
the Fr(R) = ∅. So Fr(A) ∪ Fr(B) contains but does not necessarily equal Fr(A) ∪ Fr(B).

Problem 11: Let X be the set of real numbers and β the family of all subsets of the form {x | a ≤ x < b where a < b}. Prove
that β is a base for a topology on X and that in this toplogy each member of β is both open and closed. Show that this topology
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does not have a countable base.

Solution: The intersection of two elements of β is clearly another element of β. By induction the intersection of a finite
number of elements of β is in β. Also clearly ∪b∈βb = R. Thus β is a base for a topology by Theorem 2.5.

Let a ∈ R. Then [a,∞) = ∪n∈N[a, n) and (−∞, a) = ∪n∈N[−n, a). Thus [a,∞) and (−∞, a) are open sets in the toplogy
generated by β. For a, b ∈ R. Then [a, b) is open by the definition of base. And if A = (−∞, a) ∪ [b,∞), then A is open
because it is the union of two open sets. But Ac = [a, b). Therefore [a, b) is also closed.

Suppose {Bi}
∞
i=1 is a countable base. Define N : R → N as follows. For each x ∈ R pick an n s.t. x ∈ Bn ⊆ [x, x + 1). We can

do this because {Bi}
∞
i=1 is a base and [x, x + 1) is open. Suppose N(x) = N(y). If x < y then x ∈ BN(y) ⊆ [y, y + 1) which is

impossible. Likewise y ≥ x is impossible. Thus N(x) = N(y)⇒ x = y. Thus N is a one-to-one function from R to N. But R
is uncountable and N is countable. So this is a contradiction.

Problem 12: Show that if X has a countable base for its topology, then X contains a countable dense subset. A space whose
topology has a countable base is called a second countable space. A space which contains a countable dense subset is said to
be separable.

Solution: Let {Bi}
∞
i=1 be a countable base. For each i choose xi ∈ Bi. Then {xi} is dense. To see this let U be any open set.

Then since {Bi} is a base, ∃ i s.t. Bi ⊆ U. Since xi ∈ Bi it follows that xi ∈ U. Therefore every open set intersects {xi}. Thus
{xi} is dense.

Section 2.2 - Continuous Functions

Notes

Page 31. Theorem 2.5. It is worth noting that not all bases satisfy the conditions of this theorem, for example the set of all
open discs in R2.

Page 32. Theorem 2.6, converse is left to the reader. Suppose the inverse image of each open set of Y is open in X. Let x ∈ X

and N be a neighborhood of f (x). Let
◦

N be the set of points a in N for which N is neighborhood of a. Then
◦

N is an open

set containing f (x). Thus f −1(
◦

N) is an open set containing x. and thus is a neighborhood of x and f −1(
◦

N) ⊆ f −1(N). Thus
f −1(N) is a nieghborhood of x. Thus f is continiuous.

Page 33. Three of the implications are left to the reader.

(a)⇒ (b): Asasume f : X → Y is a map. Let β be a base for the topology on Y . We must show f −1(B) is open ∀ B ∈ β. This
is obvious since the definition of map is that f −1(U) is open ∀ U open and every element of β is open.

(c) ⇒ (d): Assume f (A) ⊆ f (A) ∀ A ⊆ X. We must show f −1(B) ⊆ f −1(B) ∀ B ⊆ Y . Let B ⊆ Y . Let x ∈ f −1(B). Then
f (x) ∈ f ( f −1(B)) ⊆ f ( f −1(B)) ⊆ B (by the assumption). Thus x ∈ f −1(B).

(e) ⇒ (a): Assume f (closed) = closed. Let O be open in Y . Then f −1(O) = ( f −1(Oc))c. Oc closed ⇒ f −1(Oc) closed ⇒
( f −1(Oc))c closed⇒ f −1(O) open.

Page 34. In the example it says ”One readily checks that U is open in En+1. I don’t know what he means by ”readily” but the
argument of Chapter 1, Problem 12 can be extended to general dimension n.

Page 34. In the paragraph following the example, he says ”It is intuitively obvious...”. I think it’s a bit overstated to call it
”obvious”. I would instead have said something like ”As you might suspect ...”.
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Page 33. TYPO: Two lines above Example. f −1(B) should be f −1(B).

Problems 2.2

Problem 13. If f : R → R is a map (i.e. a continuous function), show that the set of points which are left fixed by f is a
closed subset of R. If g is a continuous real-valued function on X show that the set {x | g(x) = 0} is closed.

Solution: First we show the sum of two continuous functions is continuous. I don’t see a real easy way to do this from the
theorems we’ve proven so far. So I prove this the basic characterization of continuity using sequences. Thus we need the
following:

Lemma: The following are equivalent: (a) If an → a then f (an)→ f (a), and (b) f −1(U) is open ∀ open sets U.

Proof: (a)⇒ (b) Let U be open. If f −1(U) is not open then ∃ p ∈ f −1(U) s.t. ∀ n ∃ an < f −1(U) s.t. |p−an| <
1
n . Then an → p

so f (an)→ f (p). But f (an) < U ∀n thus lim f (an) < U since Uc is closed. Thus f (p) < U, contradicting p ∈ f −1(U).
(b) ⇒ (a) Suppose an → a. Let Bm = f −1( f (a) − 1

m , f (a) + 1
m ). Bm is open and contains a. Thus ∃ N s.t. an ∈ Bm ∀ n ≥ N.

Thus f (am) ∈ ( f (a) − 1
n , f (a) + 1

n ) ∀ m > N. Thus | f (am) − f (a)| < 1
n ∀ m ≥ N. Thus f (am)→ f (a).

Using the lemma it is easy to see that the sum of continuous functions is continuous. Let h(x) = f (x)−x. Then h is continuous.
The set {0} is closed and the set of points left fixed by f is exactly h−1({0}). Since h is continuous, by Theorem 2.9 (e) this set
is closed.

For the second part, in the same way, since g is continuous and {0} is closed, {x | g(x) = 0} = g−1({0}) and so is closed.

Problem 14. Prove that the function h(x) = ex/(1 + ex) is a homeomorphism from the real line to the open interval (0, 1).

Solution: Let f (x) = ex

1+ex . Let y ∈ (0, 1). Let x = ln
(

y
1−y

)
, which is defined since 0 < y < 1⇒ y

1−y > 0. Then f (x) = y, so f
is onto. Now suppose f (x) = f (y). Then

ex

1 + ex =
ey

1 + ey

which implies ex + ex+y = ey + ex+y. Therefore ex = ey. Taking the natural log we get x = y. Thus f is one-to-one. For
a, b ∈ R, f −1((a, b)) =

(
ln a

1−a , ln
b

1−b

)
which is open. Since the intervals (a, b) are a basis, it follows from Theorem 2.9 (b)

that f is continuous. And f ((a, b)) = ( f (a), f (b)) so f takes open sets in the base to open sets. Therefore f −1 is continuous.
Thus f is a homeomorphism.

Problem 15. Let f : E1 → E1 be a map and define its graph Γ f : E1 → E2 by Γ f (x) = (x, f (x)). Show that Γ f is continuous
and that its image (taken with the topology induced from E2) is homeomorphic to E1.

Solution: f is one-to-one by the definition of a function, and it’s obviously onto. We just have to show f and f −1|Γ f (E1) are
continuous. The finite open intervals (a, b) form a basis of E1. Let Ua,b =

{
(x, y) ∈ E2 | x ∈ (a, b)

}
. Then U is open in E2. Sets

of the form B∩Γ f (E1) form a base of open sets in Γ f (E1), where B is an open ball in E2. Note that B∩Γ f (E1) = Ua,b∩Γ f (E1)
for some Ua,b. And then Γ−1

f (B ∩ Γ f (E1)) = Γ−1
f (Ua,b) = (a, b) is open in E1. Thus Γ f is continuous. Conversely,

f ((a, b)) = Γ f (E1) ∩ Ua,b. Therefore f ((a, b)) is open in Γ f (E1). Thus Γ−1
f is continuous. Thus Γ f is a homeomorphism.

Problem 16. What topology must X have if every real-valued function defined on X is continuous?

Solution: X must have the discrete topology where every subset is open. To show this it suffices to show points in X are open.
Let x ∈ X. Define f : X → R by f (x) = 0 and f (y) = 1 ∀ y , x. Then f −1((−1/2, 1/2)) = {x}. Thus if f is continuous, since
(−1/2, 1/2) is open, {x} is open.
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Problem 17. Let X denote the set of all real numbers with the finite-complement topology, and define f : E1 → X by
f (x) = x. Show that f is continuous, but is not a homeomorphism.

Solution: Let U be open in X. Then Uc = {x1, . . . , xn} a finite set. Thus the set U is also open in the usual topology on R
because points are closed. Thus f is continuous. Conversely, let U = (0, 1). Then U is open in the usual topology but not in
X. Thus f (U) is not open in X. Thus f −1 is not continuous. Thus f is not a homeomorphism.

Problem 18. Suppose X = A1 ∪ A2 ∪ . . . , where An ⊆
◦

An+1 for each n. If f : X → Y is a function such that, for each n,
f |An : An → Y is continuous with respect to the induced topology on An, show that f is itself continuous.

Solution: Let x ∈ X. Then x ∈ An for some n and An ⊆
◦

An+1. Thus x ∈
◦

An+1. Thus X = ∪
◦

An. Now let U be open in Y . Since

f is continuous on An, by Theorem 2.8 f is continuous on
◦

An. Thus f −1(U) ∩
◦

An = f |−1
◦

An

(U) is open in
◦

An. Thus ∃ open sets

Vn s.t. Vn ∩
◦

An = f −1(U) ∩
◦

An. Thus

f −1(U) = f −1(U) ∩ X = f −1(U) ∩ ∪n(
◦

An) = ∪n( f −1(U) ∩
◦

An) = ∪n(Vn ∩
◦

An)

which is a union of open sets and so is open.

Problem 19. The characteristic function of a subset A of a space X is the real-valued function on X which assigns the value
1 to points of A and 0 to all other points. Describe the frontier of A in terms of this function.

Solution:

Definition: Let f : X → Y . Then f is continuous at x if ∀ U ⊆ Y with f (x) ∈ U, ∃ an open set V in X s.t. x ∈ V ⊆ f−1(U).

Now let f be the characteristic function of A. We first show that f is continuous on
◦

A ∪
◦

Ac. Let x ∈
◦

A. Let U be open with

f (x) ∈ U. Since x ∈
◦

A ⊆ A, 1 ∈ U. So f −1 = A or X. If f −1(U) = X then f −1(U) is open. If f −1(U) = A then since x ∈
◦

A ∃

V s.t. x ∈ V ⊆
◦

A ⊆ A = f −1(U). Thus f is continuous at x. Now suppose x ∈
◦

Ac. Let U ⊆ Y be open s.t. f (x) ∈ U. Since

x ∈
◦

Ac ⊆ Ac, 0 ∈ U. So f −1(U) = X or Ac. If f −1(U) = X then f −1(U) is open. If f −1(U) = Ac then since x ∈
◦

Ac ∃ V ⊆ X

open s.t. x ∈ V ⊆
◦

Ac ⊆ Ac = f −1(U). So f is continuous at x.

Claim: x is in the frontier of A⇐⇒ f is not continuous at x.

Proof: (⇒) We are given that x ∈ A ∩ Ac. Let x be in the frontier of A. First suppose f (x) = 1. Let U = ( 1
2 ,

3
2 ). Suppose

f −1(U) were open. Then x ∈ f −1(U) and x ∈ Ac implies f −1(U) ∩ Ac , ∅ which implies 0 ∈ U, a contradiction. Thus f −1(U)
cannot be open. Thus f cannot be continuous at x. Now suppose f (x) = 0. Let U = (− 1

2 ,
1
2 ). Suppose f −1(U) were open.

Then x ∈ f −1(U) and x ∈ A implies f −1(U)∩ A , ∅ ⇒ 1 ∈ U. A contradiction, thus f −1(U) cannot be open. Thus in this case
also f cannot be continuous at x. Since f (x) equals 0 or 1, this covers all cases.

(⇐) We assume f is not continuous at x. Let x ∈ U open. Suppose f (U) = 1. Then x ∈ U ⊆ A. Thus x ∈
◦

A. But f is

continuous on
◦

A. Thus 0 ∈ f (U). Suppose f (U) = 0. Then x ∈ U ⊆ Ac. So x ∈
◦

Ac. But f is continuous on
◦

Ac. Therefore,
f (U) = {0, 1}. Thus ∃ y ∈ U s.t. f (y) = 0. So y ∈ Ac and y ∈ U. Thus U ∩ Ac , ∅. Thus x ∈ Ac. And ∃ y ∈ U s.t. f (y) = 1.
So y ∈ A and y ∈ U. Thus U ∩ A , ∅. Thus x ∈ A. Thus x is in x ∈ Ac ∩ A. Thus x is in the frontier of A.

Problem 20. An open map is one which sends open sets to open sets; a closed map takes closed sets to closed sets. Which of
the following maps are open or closed?

(a) The exponential map x 7→ eix from the real line to the circle.
(b) The folding map f : E2 → E2 given by f (x, y) = (x, |y|).
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(c) The map which winds the plane three times on itself given, in terms of complex numbers, by z 7→ z3.

Solution:

(a) Call the map f . Then f is an open map and not a closed map.

Open: Let C = f (R). Since f (A ∪ B) = f (A) ∪ f (B), it suffices to check that f is open on a base of open sets. Let B
be an open interval in R. If B has length greater than 2π then f (B) is all of C. So f (B) is open in C. Otherwise f (B) is an
open arc of the circle. Also open. Thus in all cases f maps B to an open set. Since open balls are a base f must be an open map.

Not Closed: To show f is not closed, for each n ∈ N let En = [2nπ + 1/n, (2n + 1)π − 1/n]. Let E = ∪nEn. Suppose x is a
limit point of E. Then (x − 1/2, x + 1/2) intersects at most one En. Thus x is a limit point of En. Thus x ∈ En since En is
closed. Thus E is closed. But f (E) is equal to C intersected with the upper half plane im(z) > 0. This is an open set in C, and
not closed since z = 1 is a limit point of f (E) not in f (E). Thus f (E) is not closed.

(b) f is a closed map and not an open map.

Not Open: To see f is not open, let D be the open unit disc. Let H+ = {(x, y) | y ≥ 0} and H− = {(x, y) | y ≤ 0}. Then
f (D) = D ∩ H+. Therefore z = 0 ∈ f (D) and every open ball containing z intersects H+c

⊂ f (D)c. Thus f (D) is not open.

Closed: Now, suppose E is closed in E2. Let E′ = E ∩ H− and let E′′ be E′ reflected about the x-axis. Then f −1(E) =

(E ∩H+)∪ (E′′). Now E and H+ are closed so E ∩H+ is closed. And E′′ is closed because H− is closed, so E′ is closed, and
reflection is a homeomorphism. Thus f −1(E) is closed.

(c) Call the map f . Then f is an open map and a closed map.

Open: We first show it is open. Let Aθ1,θ2,r1,r2 = {reiθ ∈ C | θ1, θ2, r1, r2 ∈ [0,∞) and θ1 < θ < θ2, r1 < r < r2}. Then the
set β = {Aθ1,θ2,r1,r2 | θ2 − θ1 < 2π and 0 ≤ r1 < r2} form a base for the usual topology on C. The sets are clearly open and
the intersection of any two of them is another one. Also for any z ∈ Aθ1,θ2,r1,r2 there is an open disc D s.t. z ∈ D ∈ Aθ1,θ2,r1,r2

and for any open disc D with z ∈ D we can find θ1, θ2, r1, r2 s.t. z ∈ Aθ1,θ2,r1,r2 ∈ D. Now consider what happens to Aθ1,θ2,r1,r2

under the function f . If θ2 − θ1 > 2π/3 then f (Aθ1,θ2,r1,r2 ) is a full open annulus. Otherwise f (Aθ1,θ2,r1,r2 ) = A3θ1,3θ2,r1,r2 which is
open. Thus f takes basic open sets in β to open sets. Since f (A ∪ B) = f (A) ∪ f (B) for any sets A and B, it suffices to check
open-ness on the base β. Thus f is an open map.

Closed: We now show f is a closed map. Let E be any closed set in C. Let Q1 be the first quadrant {x + iy | x, y ≥ 0}.
Let Q2,Q3,Q4 be the other (closed) quadrants. Then Q1 is closed, so E ∩ Q1 is closed. The map f restricted to Q1 is a
homeomorphism from Q1 to its image f |Q1 : Q1 → f (Q1) = Q1 ∪ Q2 ∪ Q3 because its inverse reiθ 7→ reiθ/3 is continuous.
Thus f (E ∩ Q1) is closed in Q1. Likewise f (E ∩ Qi) is closed for all i = 1, 2, 3, 4. Functions respect unions, thus since
E = ∪i(E ∩ Qi) it follows that f (E) = ∪i f (E ∩ Qi). But each f (E ∩ Qi) is closed. Thus f (E) is closed.

Problem 21. Show that the unit ball in En (the set of points whose coordinates satisfy x2
1 + · · · + x2

n ≤ 1) and the unit cube
(points whose coordinates satisfy |xi| ≤ 1, 1 ≤ i ≤ n) are homeomorphic if they are both given the subspace topology from En.

Solution: Note that nowhere in the proof of Lemma 2.10 is it used that we are in two dimensions. The proof goes through
basically without change to any finite dimension where we replace ”disc” with ”ball”. Now let f : En − 0→ En − 0 be given
by f (v) = 1

||v||v. Then f is continuous and the image of f is the unit sphere. Let g be f restricted to the surface of the unit
cube. Then g is one-to-one continuous. The intersection of an open ball with the surface of the cube maps to the intersection
of an open ball with the sphere. Thus g is an open map. Therefore the inverse of g must be continuous. Therefore g is a
homeomorphism. By the generalization of Lemma 2.10 g may be extended from the boundaries to a homeomorphism from
the whole cube to the whole ball.
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Section 2.3 - A space-filling curve

Notes

Page 37 Proof of the space-filling curve theorem. Where it says ”we can find” (line four of the page) I think it would be
helpful to say ”The triangle which contains fm(t) in the m-th iteration contains fn(t) ∀ n ≥ m.

Problems 2.3

Problem 22. Find a Peano curve which fills out the unit square in E2.

Solution: The boundary of the unit square is homeomorhpic to the circle S 1 and the boundary of the unit triangle is also
homeomorphic to the circle S 1. Therefore by Lemma 2.10 there is a homeomorphism from the unit disk to the unit triangle.
Let T be the unit triangle. Let B be the unit cube. Let h : T → B be a homeomorphism. Let f : [0, 1] → T be a space-filling
curve. Then h ◦ f is a continuous onto map from [0, 1] to the unit cube and therefore a space-filling curve.

Problem 23. Find an onto, continuous function from [0, 1] to S 2.

Solution: By Chapter 1, Problem 12, the E2 is homeomorpic to S 2 with the north pole removed. From Chapter 2, Problem 14
it easily follows that E2 is homeomorphic to (0, 1)× (0, 1). Find a homeomorphism f : (0, 1)× (0, 1)→ S 2 − (0, 0, 1). Extend
f to a function g : [0, 1]× [0, 1]→ S 2 by sending any point on the boundary (i.e. points with at least one coordinates equal to
0 or 1) to (0, 0, 1). Then if B is an open ball in E3 containing (0, 0, 1) then g−1(B∩ S 2) is either the entire square [0, 1]× [0, 1]
or it can be obtained by thickening the boundary inside the square and taking its interior, together with the boundary itself.
This is open in [0, 1] × [0, 1] so g is continuous. Now let h : [0, 1] → [0, 1] × [0, 1] be a space filing curve (which exists by
Problem 22). Then g ◦ h is a continuous onto map from [0, 1] to S 2.

Problem 24. Can a space-filling curve fill out all of the plane?

Solutoin: Suppose there was such a curve f : [0, 1]→ E2. Let xn ∈ [0, 1] s.t. f (xn) = n. Then xn is a bounded sequence in R.
We know from basic calculus (The Bolzano-Weierstrass Theorem, which has an elementary proof) that xn has a convergent
subsequence xnk → L ∈ [0, 1]. But then f (xnk ) must converge to f (L). But f (xnk ) = nk → ∞. Thus no such curve can exist.

Problem 25. Can a space-filling curve fill out all of the unit cube in E3.

Solution: Let I = [0, 1]. Let f : I → I × I be a space filling curve. Let g : I × I → I × I × I × I be the map (x, y) 7→ ( f (x), f (y))
with the natural identifications (I × I) × (I × I) with I × I × I × I. Let p be projection onto the first three coordinates of
I × I × I × I. Then p ◦ g ◦ f is a continuous function from I onto I3.

Problem 26. Do you think a Peano curve can be one-one? (See Theorem (3.7).)

Solution: Well, clearly from Theorem 3.7 if there were such a curve and if I is compact (which according to Theorem 3.3 it
is - since we’re looking ahead), then [0, 1] and [0, 1] × [0, 1] would be homeomorphic. Arguing as in the fourth paragraph
of Section 1.6, page 19, that is impossible since one can remove a single point from [0, 1] to result in a disconnected space,
while no single point can do that in [0, 1] × [0, 1].

Section 2.4 - The Tietze extension theorem

Notes

Page 39 The end of the paragraph below Figure 2.4 it says ”We leave it to the reader to work out the general case.” There’s
nothing more to this than noting that inside a hypersphere (i.e. a sphere in En) we can always find a hypercube (i.e. a cube in
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En) and conversely. And same with a hypersphere and a hyper-diamond.

Page 39 ERROR: Just above Lemma 2.13, he defines the distance from a point to a set. However, he does not handle the case
where the set may be empty. This may seem trivial but it matters for the proof of theorem 2.15. The fix is to define d(x, ∅) = 1
∀ x. This then works for Lemma 2.14 and Theorem 2.15.

Page 40 Lemma 2.14. Note that with the definition d(x, ∅) = 1 ∀ x the statement and proof go through without modification.

Page 40 Theorem 2.15. Paragraph 2 of proof. Here is where A1 or B1 really can be empty. Thus we need the modification to
the definition and Lemma 2.14 discussed above.

Page 40 Theorem 2.15. Paragraph 2 of the proof. He says ”therefore A1 must be closed in X. This was proven in Chapter 2,
Problem 9, page 31.

Page 41 TYPO: Theorem 2.15. Last line of the second to last paragraph of the proof. |g(x)| should be |gn(x)|.

Problems 2.4

Problem 27. Show d(x, A) = 0 iff x is a point of A.

Solution:

(⇒) Suppose d(x, A) = 0. Then infa∈A d(x, a) = 0. Thus ∀ ε > 0 ∃ a ∈ A s.t. d(x, a) < ε. Let U be an open set with x ∈ U.
Find ε > 0 s.t. d(x, b) < ε ⇒ b ∈ U. Choose a ∈ A s.t. d(x, a) < ε. Then a ∈ U ∩ A. Thus U ∩ A , ∅ ∀ open sets U with
x ∈ U. Thus x ∈ A.

(⇐) Suppose x ∈ A. For n ∈ N let Bn = {y | d(x, y) < 1/n}. Then Bn is open ∀n so Bn ∩ A , ∅. Let an ∈ Bn ∩ A. Then
d(x, an) < 1/n thus infa∈A d(x, a) < 1/n ∀ n. Thus infa∈A d(x, a) = 0.

Problem 28. If A, B are disjoint closed subsets of a metric space, find disjoint open sets U,V such that A ⊆ U and B ⊆ V .

Solution: Let X be the metric space. By Lemma 2.14 there is a continuous function f : X → [−1, 1] s.t. f (A) = 1, f (B) = −1.
Let O1 = [−1, 0) and O2 = (0, 1]. Then O1 and O2 are open sets in [−1, 1]. Thus f −1(Oi) is open, for i = 1, 2. And
f −1(O1) ∩ f −1(O2) = ∅. And A ⊆ f −1(O1) and B ⊆ f −1(O2).

Problem 29. Show one can define a distance function on an arbitrary set X by d(x, y) = 1 if x , y and d(x, x) = 0. What
toplogy does d give to X?

Solution: We first show d is a metric. It is real-valued. And clearly d(x, y) ≥ 0⇔ x = y. Also clearly d(x, y) = d(y, x). Finally,
the only way we could have d(x, y) + d(y, z) < d(x, z) is if the LHS is 0. But then x = y = z and so the RHS is also zero. Thus
d is a metric. Since {x} = {y | d(x, y) < 1/2}, the sets {x} are open. Since every set is a union of its points, every set is open.
Thus this metric gives the discrete topology.

Problem 30. Show that every closed subset of a metric space is the intersection of a countable number of open sets.

Solution: Let A be closed in the metric space X with distance d. Let An = {x ∈ X|d(x, A) < 1/n}. Then An is the union of open
balls, so is open. We claim A = ∩nAn. Clearly A ⊆ An ∀ n, so A ⊆ ∩nAn. Suppose x < A. Then infa∈A d(a, x) = ε > 0 since
otherwise x would be in A by Problem 27. Let n ∈ N s.t. 1

n < ε. Then x < An. Thus ∩nAn ⊆ A. Thus A = ∩nAn.

Problem 31. If A, B are subsets of a metric space, their distance apart d(A, B) is the infinum of the numbers d(x, y) where
x ∈ A and y ∈ B. Find two disjoint closed subsets of the plane which are zero distance apart. The diameter of A is the supre-
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mum of the numbers d(x, y) where x, y ∈ A. Check that both of the closed sets which you have just found have infinite diamter.

Solution: Let A be the x-axis. Let B be the set {(x, 1/x) | x > 0}. The functions x 7→ 0 and x 7→ 1
x are continuous on (0,∞) so

A and B are closed by Chapter 2, Problem 15. Let an = (n, 0) and bn = (n, 1/n). Then an ∈ A and bn ∈ B and d(an, bn) = 1
n .

Thus d(A, B) < 1
n ∀ n. Thus d(A, B) = 0. Both sets clearly have infinite diamter.

Problem 32. If A is a closed subset of a metric space X, show that any map f : A→ En can be extended over X.

Solution: Let pi be the projection onto the i-th coordinate. Each pi is continuous because the inverse of an open interval is
clearly open. Let fi = pi ◦ f . By Theorem 2.15, each fi can be extended to a map gi : X → E. Then g = (g1, . . . , gn) extends
f . We must show g is continuous. The sets I1 × · · · × In, where Ii are open intervals, form a base for the topology on En. And
g−1(I1 × · · · × In) = g−1

1 (I1) ∩ · · · ∩ g−1
n (In), which is therefore open. g−1(U) is open for all U in a base of open sets, therefore

g is continuous by Theorem 2.9 (b).

Problem 33. Find a map from E1 − {0} to E1 which cannot be extended over E1.

Solution: Let f (x) = 1/x. Then f is continuous on E1 − {0} by Theorem 2.9 (b) because f −1 of an open interval is an open in-
terval, or the union of two open intervals. Now suppose g extends f to all of E. Let an = 1

n . Then an → 0. Thus g(an)→ g(0).
But g(an) = f (an) = n→ ∞. Thus no such g can exist.

Problem 34. Let f : C → C be the identity map of the unit circle in the plane. Extend f to a map from E2 − {0} to C. Would
you expect to be able to extend f over all of E2? (For a precise solution to this latter problem see Section 5.5.)

Solution: If we could extend f to all of E2 then we’d have a continuous map from the closed unit disc to its boundary, that is
the identity on the boundary. Apparently from the results to come in Section 5.5 this is impossible, because we could rotate
the circle after applying g and get a map from the disc to itself that does not fix any points. It seems obvious that any map
from the disc to its boundary that fixes the boundary would have to ”tear” a hole somewhere and would therefore have to
separate points which are close. But glancing ahead at the proof in Section 5.5, there is apparently no basic way to prove this,
we will need heavier machinery. So I’m not 100

Problem 35. Given a map f : X → En+1 − {0} find a map g : X → S n which agrees with f on the set f −1(S n).

Solution: Let h : En+1 − {0} → S n be given by v 7→ 1
||v||v. Then h is continuous and h is the identity on S n. Let g = h ◦ f . Then

g is continuous and agrees with f on f −1(S n).

Problem 36. If X is a metric space and A closed in X, show that a map f : A→ S n can always be extended over a neigborhood
of A, in other words over a subset of X which is a neighborhood of each point of A. (Think of S n as a subspace of En+1 and
extend f to a map of X into En+1. now use Problem 35.)

Solution: Following the hint we think of S n as a subspace of En+1. Then f = ( f1, . . . , fn). Each fi is pi ◦ f where pi is the i-th
projection. The solution to Problem 32 shows pi is continuous. So each fi is continuous. By Theorem 2.15 each component
fi can be extended to a function gi on all of X s.t. gi agrees with fi on A. Then g = (g1, . . . , gn) extends f on A to a map from
X to En+1. The same argument as in Problem 32 shows g is continuous. Note that g−1(0) ∩ A = ∅ because f maps A into S n.
And g−1(0) is a closed set in X (Theorem 2.9 (e)). Thus by Problem 28 we can find disjoint open sets U and V in X such that
A ⊆ U and g−1(0) ⊆ V . Let h be the map from Problem 35. Then h ◦ g is well-defined as long as g(x) , 0. Thus h ◦ g is
well-defined on U. And h ◦ g|U agrees with f on A since h is the identity on S n.
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Chapter 3 - Compactness and Connectedness
Section 3.1 - Compactness and Connectedness

Notes

Page 44. Two lines from the bottom it says“’let O be the member of F . . . ”. More accurately it should say “let O be a member
of F . . . ”.

Page 45. Six lines from the bottom it says “The reader should make sure that he can suppy the details for these statements.”
The first statement is that xn converges to p. This is a basic calculus result, a monotonically increasing sequence converges to
its supremum. Since for each n the sequence {ai}

∞
i=n is entirely contained in In, and In is closed, it follows that p ∈ In. If the

intersection ∩∞n=1In contains two points x and y, let δ = (x− y)/2. Then there is an In whose diameter is less than δ. Thus both
x and y cannot be in In. Thus x and y cannot both be in ∩∞n=1In.

Page 46. Seven lines before the problems he says “It is an interesting exercise to prove that ∩∞n=1S n is exactly one point.” I’m
not sure why this is so interesting, maybe I’m missing something. But this is exactly Problem 2 (see below).

Problems 3.2

Problem 1. Find an open cover of E1 which does not contain a finite subcover. Do the same for [0, 1) and (0, 1).

Solution:

E1: Let ε = 1/10. For each n ∈ Z let In = (n − ε, n + 1 + ε). Then {In}n∈Z is an open cover of E1. If we remove any In then
n + 1/2 is no longer covered. Thus {In} cannot have a finite subcover.

[0, 1): For n ∈ N let In = [0, 1 − 1/n). Then In is open in [0, 1) and ∪n∈NIn = [0, 1). If {In1 , . . . , Ink } is a finite subcover, let
m = maxi=1,...,k ni. Then In1 ∪ · · · ∪ Ink = Im = [0, 1 − 1/m) and [0, 1) * [0, 1 − 1/m). Thus {In1 , . . . , Ink } is not a cover. Thus
there cannot be a finite subcover of {In}n∈N.

(0, 1): Let In = (1/n, 1 − 1/n). Then In is open in (0, 1) ∀ n and ∪n∈NIn = (0, 1). If {In1 , . . . , Ink } is a finite subcover, let
m = maxi=1,...,k ni. Then In1 ∪ · · · ∪ Ink = Im = (1/m, 1 − 1/m) and (0, 1) * (1/m, 1 − 1/m). Thus {In1 , . . . , Ink } is not a cover.
Thus there cannot be a finite subcover of {In}n∈N.

Problem 2. Let S ⊇ S 1 ⊇ S 2 ⊇ · · · be a nested sequence of squares in the plane whose diameters tend to zero as we proceed
along the sequence. Prove that the intersection of all these squares consists of exactly one point.

Solution: Each S n is a square so is of the form In × Jn for closed one-dimensional intervals. And S n ⊃ S n+1 means In ⊃ In+1
and Jn ⊃ Jn+1. Thus we can apply the one-dimensional argument given above to the In’s and Jn’s. We get a sequence of points
xn converging to p and yn converging to q. So (xn, yn) ∈ S n therefore converges to (p, q) which must be in S n for all n since S n

is closed, so (p, q) ∈ ∩∞n=1S n. Similarly the one-dimensional argument shows there can be only a unique x and y coordinate of
anything in ∩∞n=1S n. Thus ∩∞n=1S n = {(p, q)}.

Problem 3. Use the Heine-Borel theorem to show that an infinite subset of a closed interval must have a limit point.

Solution: (Also see Theorem 3.8). Let I be a closed interval. Let A ⊆ I be an infinite subset. Suppose A did not have any limit
points. Then for each x ∈ I there is an open set Ux ⊆ I such that x ∈ Ux and Ux∩A−{x} = ∅. Since x ∈ Ux ∀ x, it follows that
∪x∈IUx ⊆ I. Thus {Ux} is an open cover of I. By the Heine-Borel theorem there is a finite subcover {Ux1 , . . . ,Uxn }. It must be
that A ⊆ Ux1 ∪ · · · ∪ Uxn . But the only element of each Ux that is in A is x. Thus Ux1 ∪ · · · ∪ Uxn = {x1, . . . , xn}, a finite set.
Thus A must be finite. A contradiction.
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Problem 4. Rephrase the definition of compactness in terms of closed sets.

Solution: The following comes from De Morgan’s laws. But there is also another equivalent characterization that is less
obvious. Below are both.

Claim 1: X is compact⇔ for every set of closed sets {Cα}with ∩αCα = ∅ has a finite subset {Cα1 , . . . ,Cαn } s.t. Cα1∩· · ·∩Cαn =

∅.

Proof of Claim 1: (⇒) Suppose X is compact. Let {Cα} be a collection of closed sets s.t. ∩αCα = ∅. Then {Cc
α} is a collection

of open sets and ∪αCc
α = (∩Cα)c = ∅c = X. Thus {Cc

α} is an open cover of X. Since X is compact there is a finite subcover
Cc
α1
, . . . ,Cc

αn
. Since Cc

α1
∪ · · · ∪Cc

αn
= X, ∅ = Xc = (Cc

α1
∪ · · · ∪Cc

αn
)c = Cα1 ∩ · · · ∩Cαn .

(⇐) Let {Uα} be an open cover of X. Then {Uc
α} is a collection of closed sets s.t. ∩αUc

α = (∪Uα)c = Xc = ∅. Thus ∃ finite
subset {Uc

α1
, . . . ,Uc

αn
} s.t. Uc

α1
∩ · · · ∩ Uc

αn
= ∅. But then (Uc

α1
∩ · · · ∩ Uc

αn
)c = Uα1 ∪ · · · ∪ Uαn = X. So {Uα} has a finite

subcover.

Definition: Let F be a collection of sets. Then F has the finite intersection property (FIP) if whenever F1, . . . , Fn ∈ F ,
F1 ∩ · · · ∩ Fn , ∅.

Claim 2: Let X be a topological space. Then X is compact⇐⇒ for every collection {Cα}α∈A of closed sets in X with the FIP,
∩α∈A{Cα} , ∅.

Proof of Claim 2: (⇐) Let {Uα} be an open cover of X. Then F = {Uc
α} is a collection of closed sets such that ∩Uc

α =

(∪Uα)c = Xc = ∅. Thus F cannot have the FIP. So ∃ a finite set such that Uα1 ∪ · · · ∪ Uαn = ∅. Thus Uα1 ∪ · · · ∪ Uαn = X.
Thus {Uα} has a finite subcover. Thus X is compact.

(⇒) Let {Cα} be a collection of closed sets with the FIP. Then {Cc
α} is a collection of open sets. Since {Cα} has the FIP, no

finite subset of it has empty intersection. Note that ∩Ai = ∅ ⇔ ∪Ac
i = X. Thus no finite subset of {Cc

α} is an open cover. Since
X is compact, it follows that {Cc

α} cannot be an open cover. In other words ∪Cc
α , X. Thus ∩Cα , ∅.

Section 3.3 - Properties of compact spaces

Problems 3.3

Problem 5. Which of the following are compact? (a) the space of ratoinal numbers; (b) S n with a finite number of points
removed; (c) the torus with an open disc removed; (d) the Klein bottle; (e) the Möbius strip with its boundary circle removed.

Solution:

(a) No, Q is not compact. By Theorem 3.9 a compact subset of R is closed and bounded. Q is neither.

(b) No, S n − {p1, . . . pn} is not compact. Again, by Theorem 3.9, a compact subset of Rn+1 is closed and bounded. Since S n

lives in Rn+1, the theorem applies. S n is bounded, but S n − {p1, . . . , pn} is not closed, because one can find a sequence in S n

that converges to any of the removed points.

(c) Yes, the torus with an open disc removed is compact. The torus can be embedded in R3 as a bounded subset. And since
we are removing an open disc, what remains is a closed subset of the torus and therefore (by Chapter 2, Problem 7, page 31)
is a closed subset of R3. Therefore, by Theorem 3.9 it is compact.

(d) The Klein bottle is compact. It is the continuous image of a closed finite rectangle. By Theorem 3.9 a closed finite
rectangle is compact. So by Theorem 3.4 the Klein bottle is compact. Alternatively, the Klein bottle can be embedded into
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R4 as a closed and bounded set. Therefore, it is compact.

(e) The Möbius strip with its boundary circle removed is not compact. Think of the strip as a subset of R3. Then one can find
a sequence of points in the strip that converge to a point on the boundary, which has been removed. Since compact sets must
be closed in R3, the Möbius with boundary removed cannot be compact.

Problem 6. Show that the Hausdorff condition cannot be relaxed in theorem (3.7).

Solution: Let X = {a, b} a set with two points. Let X1 be X with the discrete topology (so every subset is open). Let X2
be X with the indiscrete topology (in other words the only open sets are X and ∅. Then X2 is not Hausdorff. The function
f : X1 → X2 given by f (a) = a, f (b) = b is one-to-one, onto and continuous. But f −1 is not continuous, so f is not a
homeomorphism.

Problem 7. Show that Lebesgue’s lemma fails for the plane.

Solution: Construct an open cover as follows. First let U0 be the open ball of radius one around the origin. For each point
p , (0, 0) let Up be the open disc of radius 1

||p|| centered at p. Now let δ > 0. Find n ∈ N such that 1
n < δ/3. Then the open

ball B of radius 2δ/3 is around the point (n, 0) is not contained in any Up and the diameter of B is less than δ. Thus for any
δ > 0 we can always find an open set of diameter less than delta that is not contained in any member of the open cover {Up}.

Problem 8. (Lindelöf’s theorem). If X has a countable base for its topology, prove that any open cover of X contains a
countable subcover.

Solution: Let {Un}n∈N be a countable base for the topology and {Vα}α∈A an open cover of X. For each x ∈ X there is an n ∈ N
and an α such that x ∈ Un ⊆ Vα (first find α then find n). Let B = {Unk } be the set of all of the open sets in {Un} that appear
in these relations as x ranges over all of X. Clearly B is an open cover of X. And by definition, for each U ∈ B there is an αU

s.t. U ⊆ VαU . Thus {VαU }U∈U is an open subcover of X. Since {Un} is countable, B is countable, thus it is a countable subcover.

Problem 9. Prove that two disjoint compact subsets of a Hausdorff space always posess disjoint neighborhoods.

Solution Let X be Hausdorff and let A and B be two disjoint compact subsets of X. We know by Theorem 3.6 that for any
element x ∈ X we can find disjoint open sets U and V such that A ⊆ U and x ∈ V . Now for each a ∈ A find open sets Ua

and Va such that a ∈ Ua and B ⊆ Va. Then {Ua}a∈A is an open cover of A. So there is a finite subcover Ua1 , . . . ,Uan . Let
U = Ua1 ∪ · · · ∪ Uan and V = Va1 ∩ · · · ∩ Van . Then U ∩ V = ∅ since any element of U is in Uai for some i and if it is also
in V then it is in Vai but Uai ∩ Vai = ∅. Since V is an intersection of a finite number of open sets it is open. And B ⊆ V since
B ⊆ Va ∀ a. Thus A ⊆ U and B ⊆ V .

Problem 10. Let A be a compact subset of a metric space X. Show that the diameter of A is equal to d(x, y) for some pair of
poitns x, y ∈ A. Given x ∈ X, show that d(x, A) = d(x, y) for some y ∈ A. Given a closed subset B, disjoint from A, show that
d(A, B) > 0.

Solution:

Let D be the diameter of A. We first need to know that D < ∞. The proof of boundedness in Theorem 3.9 goes through with-
out change if we replace the origin with any element of A. Now for each n ∈ N find an, bn ∈ A such that d(an, bn) > N − ε/3.
By Theorem 3.8 there is a convergent subsequence {ani } of {an}. Since A is compact it is closed by Theorem 3.6 (metric
spaces are Hausdorff). Thus limi→∞ ani = a ∈ A. Likewise, there is a subsequence {bni } of {bn} that converges to b ∈ A.
Choose n s.t. d(a, an) < ε/3 and d(b, bn) < ε/3. Then d(an, bn) ≤ d(an, a) + d(a, b) + d(b, bn) ≤ ε/3 + d(a, b) + ε/3. Thus
d(a, b) ≥ d(an, bn) − 2ε/3 ≥ D − ε/3 − 2ε/3 = D − ε. Thus d(a, b) ≥ D. And since a, b ∈ A, d(a, b) ≤ D. Thus d(a, b) = D.

We next show given x ∈ X that d(x, A) = d(x, y) for some y ∈ A. Let ε > 0. For each n ∃ an ∈ A s.t. d(x, an) > d(x, A) − ε.
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Then as in the first part of this exercise, an has a subsequence ani that converges to y ∈ A. Find n s.t. d(y, an) < ε. Then
d(x, y) ≤ d(x, an) + d(an, y) < d(x, A) + ε. Thus d(x, y) ≤ d(x, A). Since y ∈ A, d(x, y) ≥ d(x, A). Thus d(x, y) = d(x, A).

We now show given a closed subset B disjoint from (compact) A that d(A, B) > 0. Suppose d(A, B) = 0. First notice that

d(A, B) = inf
a∈A,b∈B

d(a, b) = inf
a∈A

inf
b∈B

d(a, b) = inf
a∈A

d(a, B).

Thus ∃ {an} in A s.t. d(an, B) → d(A, B) = 0. Since A is compact, as in the first part ∃ a subsequence {ani } that converges to
a ∈ A. Then d(A, B) ≤ d(a, B) ≤ d(a, an) + d(an, B)→ d(A, B). Thus d(a, B) = d(A, B) = 0. Since 0 = d(a, B) = infb∈B d(a, b),
∃ a sequence {bn} in B s.t. d(a, bn) → 0. But then bn → a. Since bn ∈ B ∀ n and B is closed, if lim bn exists it must be in B.
Thus a ∈ B. But A and B are disjoint. Thus it is impossible that d(A, B) = 0.

Problem 11. Find a topological space and a compact subset whose closure is not compact.

Solution: Let X = R with the following topology. The only open sets are ∅, X, and sets of the form (−r, r) where r ∈ (0,∞).
It’s immediate to see that this is a topology. The set {0} is a compact set, because it’s finite and obviously any finite set is
compact in any topological space. But the only closed set contianing {0} is X itself. Thus, {0} = X. And X is not compact. To
see this let β be the open cover consisting of every open set except X itself. Then β is an open cover since r ∈ (−2|r|, 2|r|) ∀
r ∈ R. But β has no finite subcover.

Problem 12. Do the real numbers with the finite-complement topology form a compact space? Answer the same question for
the half-open interval toplogy (see Problem 11 of Chapter 2).

Solution:

The real numbers with finite-complement topology is compact. Let β = {Uα} be an open cover. Then let Uα0 be an element
of β. Then there are only a finite number n of points that are not in Uα0 . We only need n more elements of β to cover everything.

The real numbers with the half-open interval topology is not compact. Let β be the open cover {[n, n + 1) | n ∈ Z}. Then β
clearly does not have a finite subcover.

Problem 13. Let f : X → Y be a closed map with the property that the inverse image of each point of Y is a compact subset
of X. Show that f −1(K) is compact whenever K is compact in Y . Can you remove the condition that f be closed?

Solution: We use the characterization of compactness from Chapter 3, Problem 4, Claim 2. In other words X is compact if
any collection of closed sets with the FIP has non-empty intersection.

Let K ∈ Y be compact. Let F be a family of closed subsets of H = f −1(K) with the finite intersection property (FIP). We need
to show that ∩F∈F F , ∅. Let F ∗ = {F1 ∩ · · · ∩ Fn | F1, . . . , Fn ∈ F }. Then ∩F∈F F = ∩F∈F ∗F. And F ∗ also has the FIP. Now
consider the sets f (F) where F ∈ F ∗. Since F ∈ F ∗ are closed subsets of H, ∃ closed sets CF ∈ X s.t. CF ∩ H = F. The col-
lection {CF}F∈F ∗ also has the FIP. It follows that { f (CF)}F∈F ∗ has the FIP (since it’s always true that f (A∩ B) ⊆ f (A)∩ f (B)).
Notice that for any finite subset of {CF}F∈F ∗ we have H ∩ (CF1 ∩ · · · ∩CFn ) , ∅. It follows that { f (CF) ∩ K}F∈F ∗ has the FIP.
Since CF is closed and f is a closed map, f (CF) is closed in Y . Since K is compact and { f (CF) ∩ K}F∈F ∗ is a collection of
closed sets in K, it must be that ∩F∈F ∗ f (CF)∩K , ∅. Next we will show that f (CF)∩K = f (F). To see this let x ∈ f (CF)∩K.
Then x = f (c) for c ∈ CF . And f (c) = x ∈ K, so c ∈ f −1(K) = H. Thus c ∈ CF ∩ H. Thus c ∈ F. Thus x = f (c) ∈ f (F).
So we have shown f (CF) ∩ K ⊆ f (F). Now let y ∈ f (F). Then ∃ x ∈ F s.t. f (x) = y. Since F ⊆ f −1(K), y = f (x) ∈ K.
Also x ∈ F ⊆ CF . So y = f (x) ∈ f (CF). Thus y ∈ f (CF) ∩ K. Thus we can conclude that f (CF) ∩ K = f (F). Thus we have
shown that { f (F)}F∈F ∗ is a collection of closed sets in K that have the FIP. Thus ∩F∈F ∗ f (F) , ∅. Let y ∈ ∩F∈F ∗ f (F). Then
C = f −1(y) is compact. Now consider F ∗C = {F ∩ C : F ∈ F ∗}. Let F1, . . . , Fn ∈ F

∗. Then by the way F ∗ was defined,
F1 ∩ · · · ∩ Fn = F ∈ F ∗. Thus (F1 ∩C)∩ · · · ∩ (Fn ∩C) = (F1 ∩ · · · ∩ Fn)∩C = F ∩C. Now y ∈ f (F)⇒ ∃ x ∈ F s.t. f (x) = y
⇒ x ∈ C. Thus F ∩ C , ∅. Thus (F1 ∩ C) ∩ · · · ∩ (Fn ∩ C) , ∅. Thus {F ∩ C | F ∈ F ∗ has the finite intersection property.
Since C is compact, ∩F∈F ∗F ∩C , ∅. Thus ∩F∈F ∗F , ∅. Thus ∩F∈F F , ∅. Thus H is compact.
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Consider the following example to see that the condition that f be closed cannot be removed. Let X be E1 with the usual
topology. And let Y be E1 with the following topology. The open sets are ∅, Y and (−r, r) where r ∈ N. It is pretty obvious
that this satisfies the requirements to be a topology. Let f be the identity map. Then f is continuous because (−r, r) is open
in the usual topology. For any p ∈ Y , f −1(p) = p is compact in X. Thus f satisfies all properties except being a closed map,
which it clearly is not. Now (−1, 1) is compact in Y , in fact any bounded subset of Y is compact. But f −1((−1, 1)) = (−1, 1)
is not compact in X.

Problem 14. If f : X → Y is a one-one map, and if f : X → f (X) is a homeomorphism when we give f (X) the induced
topology from Y , we call f an embedding of X in Y . Show that a one-one map from a compact space to a Hausdorff space
must be an embedding.

Solution: This follows immediately from the fact that a subspace of a Hausdorff space is Hasusdorff, and Theorem 3.7.

Problem 15. A space is locally compact if each of its points has a compact neighborhood. Show that the following are all
locally compact: any compact space; En; any discrete space; any closed subset of a locally compact space. Show that the
space of ratoinals is not locally compact. Check that local compactness is preserved by a homeomorphism.

Solution:

A compact space is locally compact. Take the neighborhood of any point to be the whole space.

A discrete space is locally compact. Take the neighborhood of any point to be the point itself. Any finite set is clearly compact
in any space.

Let X be a locally compact space. Let A be closed subset of a X. Let p ∈ A. Then there is a compact neighborhood B of X
with p ∈ B ∈ X. Then B ∩ A is a neighborhood of p in A. Let β be an open cover of B ∩ A. Then β ∪ {Ac} is an open cover of
B. Thus there exists a finite subcover β′. Then β′ − {Ac} is a finite subcover of B ∩ A. Thus B ∩ A is a compact neighborhood
of p in A. Thus A is locally compact.

Let Suppose Q were locally compact. Suppose A ⊆ Q is a neighborhood. Then ∃ I an open interval in R s.t. I ∩ Q ⊆ A.
Let x ∈ I be any irrational. Since Q is dense in R, ∃ a sequence of rationals in I which converge to x. Therefore, there’s a
sequence of elements of A ∩ I converging to x < A. Therefore A is not closed. By theorem 3.5 A cannot be compact.

Suppose f : X → Y is a homeomorphism and X is locally compact. Let p ∈ Y . Then ∃ a compact neighborhood A of f −1(p)
in X. We will show f (A) is a compact neighborhood of p in Y . Let β be an open cover of f (A). Then β′ = { f −1(B) | B ∈ β} is
an open cover of A in X. Thus β′ has a finite subcover β′′. But then β′′′ = { f (B) | B ∈ β′′} is a finite subset of β that is an open
cover of A in Y . Thus A is compact in Y .

Problem 16. Suppose X is a locally compact and Hausdorff. Given x ∈ X and a neighborhood U of x, find a compact
neighborhood of x which is contained in U.

Solution: We know ∃ a compact neighborhood K of x. Since K and U are neighborhoods of x, ∃ a set V open in X s.t.
x ∈ V ⊆ K ∩U. By Theorem 3.6 K is closed in X, thus Vc∩K is closed in X. By Chapter 2, Problem 7, Vc∩K is closed in K.
By Theorem 3.5 Vc ∩K is a compact subset of K. By the remark following the proof of Theorem 3.4, it follows that if Vc ∩K
is compact subset of X. By Theorem 3.6 there are disjoint sets W1 and W2 both open in X such that x ∈ W1 and Vc ∩ K ⊆ W2.
Let W = W1 ∩ V . Then W is an open set s.t. W ⊆ Wc

2 and W ⊆ V . So W ⊆ Wc
2 ∩ V ⊆ Wc

2 ∩ K. Since Vc ∩ K ⊆ W2, we have
Wc

2 ⊆ V ∪ Kc. Thus Wc
2 ∩ K ⊆ (V ∪ Kc) ∩ K = V ∩ K ⊆ V . Thus W ⊆ Wc

2 ∩ K ⊆ V . Since Wc
2 ∩ K is closed, it follows that

W̄ ⊆ V . Thus x ∈ W ⊆ W̄ ⊆ V ⊆ U. Thus W̄ is a closed neighborhood of x in K with x ∈ W̄ ⊆ U. By Thoeorem 3.5 W̄ is
compact.
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Problem 17. Let X be a locally compact Hausdorff space which is not compact. Form a new space by adding one extra point,
usually denoted by∞, to X and taking the open sets of X ∪ {∞} to be those of X together with sets of the form {X − K} ∪ {∞},
where K is a compact subset of x. Check the axioms for a topology, and show that X ∪ {∞} is a compact Hausdorff space
which contains X as a dense subset. The space X ∪ {∞} is called the one-point compactification of X.

Solution: Let β be the topology on X. Define β′ = β ∪ {U ∪ {∞} | U ⊆ X and Uc is compact}. Clearly ∅ ∈ β′. And since ∅ is
compact, X ∪ {∞} ∈ β′. It remains to show β′ is closed w.r.t. arbitrary unions and finite intersection

Let {Uα}α∈A ⊆ β
′ be an arbitrary subset of β′. We must show ∪α∈AUα ∈ β

′. Write A = A1 ∪ A2 where α ∈ A1 ⇒ ∞ < Uα

and α ∈ A2 ⇒ ∞ ∈ Uα. Then {Uα}α∈A = {Uα}α∈A1 ∪ {Uα}α∈A2 . If A2 = ∅ then ∪α∈AUα = ∪α∈A1 Uα ∈ β ⊆ β
′. If A2 , ∅ then

we must show that (∪α∈AUα)c is compact. For α ∈ A2, Uc
α is compact. Since X is Hausdorff Uc

α is closed (Theorem 3.6).
Thus ∩α∈A2 Uc

α is closed. Fix any α′ ∈ A2. Then ∩α∈A2 Uc
α is a closed subset of Uc

α′ and so is compact (Theorem 3.5). Thus(
∪α∈A2 Uα

)c is compact. Thus (∪α∈AUα)c =
(
(∪α∈A1 Uα) ∪ (∪α∈A2 Uα)

)c
=

(
∪α∈A1 Uα

)c
∩

(
∪α∈A2 Uα

)c
=

(
∩α∈A1 Uc

α

)
∩

(
∩α∈A2 Uc

α

)
,

which is a closed subset of the compact set ∩α∈A2 Uc
α and therefore is compact.

Now let {Uα}α∈A ⊆ β′ be a finite subset of β′. As above decompose A into A1 ∪ A2. If A1 = ∅ then ∞ ∈ (∩α∈AUα). And
(∩α∈AUα)c =

(
∩α∈A2 Uα

)c
= ∪α∈A2 Uc

α is a finite union of compact sets and therefore compact. If A1 , ∅ then ∞ < (∩α∈AUα).
And (∩α∈AUα)c =

(
(∩α∈A1 Uα) ∩ (∩α∈A2 Uα)

)c
= (∩α∈A1 Uα)c ∪ (∩α∈A2 Uα)c = (∪α∈A1 Uc

α) ∪ (∪α∈A2 Uc
α). These are all finite un-

oins, thus this last expressoin is the union of a closed and a compact and is therefore closed. Thus (∩α∈AUα)c is closed. Thus
(∩α∈AUα) is open.

We next show X ∪ {∞} is compact. Let {Uα} be an open cover of X. Then ∃ α0 such that∞ ∈ Uα0 . Since Uc
α0

is compact, and
{Uα} is an open cover of Uc

α0
, there are Uα1 , . . . ,Uαn s.t. Uc

α0
⊆ Uα1 ∪ · · · ∪ Uαn . But then Uα0 ,Uα1 , . . . ,Uαn is an open cover

of X ∪ {∞} and so we have found a finite subcover.

We now show X ∪ {∞} is Hausdorff. Let x, y ∈ X ∪ {∞}. If x, y ∈ X then since X itself is Hausdorff we know there are open
sets that separate them. So suppose without loss of generality that y = ∞. Since X is locally compact there is an open set
U ⊆ X and a compact set K ⊆ X with x ∈ U ⊆ K. Then∞ ∈ Kc is an open set in X ∪ {∞} and Kc ∩ U = ∅.

It remains to show X is dense in X ∪ {∞}. The only way this is not true is if {∞} is an open set. But {∞}c = X which was
assumed to be not compact.

Problem 18. Prove that En ∪ {∞} is homeomorphic to S n. (Think first of the case n = 2. Stereographic projection gives a
homeomorphism between E2 and S 2 minus the north pole, points ‘out towards infinity’ in the plane becoming points near to
the north pole on the sphere. Think of replacing the north pole in S 2 as adding a point at∞ to E2.

Solution: We know from the example on page 34 that there is a homeomorphism g : En → S n − {p} where we think of
S n as a subset of En+1 and p = (0, . . . , 0, 1). Define h : En ∪ {∞} → S n by ∞ 7→ p and x 7→ g(x) for x , ∞. Then
g is clearly one-to-one and onto. Let U be any open set U ⊆ S n. If p < U then h−1(U) = g−1(U) is open. If p ∈ U then
h−1(U) = g−1(U−{p})∪{∞}. Since S n ⊆ En+1 and U contains p, there is a basic open set of the form p ∈ I1×· · ·×In+1∩S n ⊆ U
where each Ii is an open interval in E1. Thus ∃ ε > 0 such that (x1, . . . , xn+1) ∈ U ⊆ S n implies 1 − ε > xn+1. Now by Chap-
ter 1 Problem 12, for 1 ≤ i ≤ n the Xi coordinate of the stereographic projection of (x1, . . . , xn+1) is xi/(1 − xn+1). Thus
|xi/(1 − xn+1)| < |xi|/(1 − (1 − ε)) = |xi|/ε < 1/ε. This implies [g−1(U − {p})]c is bounded in En. Now U − {p} is open in
S n − {p}. Thus g−1(U − {p}) is open thus (g−1(U − {p}))c is closed. Thus we have shown that [g−1(U − {p})]c is closed and
bounded. A closed and bounded subset of En is compact by Theorem 3.1 (Can we use this? I don’t see any other way to
do it withoug this). Thus [g−1(U − {p})]c is compact. Thus g−1(U) is open in En ∪ {∞}. Thus g−1(U) is open for all open
sets U ⊆ S n. Thus g is one-to-one, onto and continuous. X is hausdorff and from Problems 15 and 17 we know En ∪ {∞} is
compact. Thus by Theorem 3.7 g must be a homeomorphism.

Problem 19. Let X and Y be locally compact Hausdorff spaces and let f : X → Y be an onto map. Show f extends to a map
from X ∪ {∞} onto Y ∪ {∞} iff f −1(K) is compact for each compact subset K of Y . Deduce that if X and Y are homeomorphic
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spaces then so are their one-point compactifications. Find two spaces which are not homeomorphic but which have homeo-
morphic one-piont compactifications.

Solution: Let f ∗ : X ∪ {∞} → Y ∪ {∞} be given by x 7→ f (x) for x ∈ X and ∞ 7→ ∞. We want to show that f ∗ is continuous.
Let U ⊆ Y ∪ {∞} be open. If ∞ < U then ( f ∗)−1(U) = f −1(U) is open. If ∞ ∈ U then [( f ∗)−1(U)]c = X − f −1(U − {∞}) =

f −1(Y−(U−{∞})). Now Y−(U−{∞}) is compact by the construction of Y∪{∞} and therefore by assumption f −1(Y−(U−{∞}))
is compact. Thus [( f ∗)−1(U)]c is compact. Thus ( f ∗)−1(U) is open in X ∪ {∞}. Thus f ∗ is continuous.

Now we need to find two non-homeomorphic spaces whose one-point compactifications are homeomorphic. Let X1 = {(x, y) ∈
E2 | x2 + y2 = 1 and y , 1} (the unit circle with north pole removed) and let X2 = {(x, y) ∈ E2 | x = 0 and − 1 ≤ y < 1}. Let
X = X1 ∪ X2. Now let Y1 = {(x, y) ∈ E2 | x2 + y2 = 1} and let Y2 = {(x, y) ∈ E2 | x = 0 and either − 1 ≤ y < 0 or 0 < y ≤
1 and y , 0}. Let Y = Y1 ∪ Y2. Then X and Y are basically the same subsets of E2 except for two points, the points (0, 1) and
(0, 0). In X if we remove (0,−1) the space breaks into a disjoint union of three separate open subsets. But there is no point in
Y that we can remove to achieve this - removing any point in Y breaks it into two pieces, never three. Thus X and Y canont be
homeomorphic. It remains to show their one point compactifications are homeomorphic. Let Z2 = {(x, y) | x = 0,−1 ≤ y ≤ 1}.
Let Z = Y1 ∪ Z2. We will show both X ∪ {∞} and Y ∪ {∞} are homeorphic to Z. Define f : X ∪ {∞} → Z ∪ {∞} by f (p) = p
if p , ∞. And ∞ 7→ (0, 1). Then f is one-to-one and onto. Z is Hausdorff and by Problem 17 X ∪ {∞} is a compact
compact Hausdorff space, so if we can show f is continuous, then by Theorem 3.7 it will follow that f is a homeomorphism.
Let U be an open set in Z. If (0, 1) < U then f −1(U) = U which is open in X. Thus by the definition of the topology on
X ∪ {∞}, it follows that f −1(U) is open in X ∪ {∞}. Now suppose (0, 1) ∈ U. Then f −1(U) = (U − {(0, 1)}) ∪ ∞. Thus
[ f −1(U)]c = X − U = Z − U which is closed and therefore compact in Z (Theorem 3.5) and therefore compact in X. Thus
again by definition of the topology on X ∪ {∞}, it follows that f −1(U) is open. The proof that Y and Z are homeomorphic is
essentially the same. Thus X and Y are homeomorphic.

Section 3.4 - Product Spaces

Problems 3.4

Problem 20. If X × Y has the product topology, and if A ⊆ X, B ⊆ Y , show that A × B = A × B, (A × B)◦ =
◦

A ×
◦

B, and
Fr(A × B) = [Fr(A) × B] ∪ [A × Fr(B)] where Fr( ) denotes the frontier.

Solution:

1) A × B = A × B: Suppose (x, y) ∈ A × B. Then x ∈ A and y ∈ B. Let U be an open set containing (x, y). Then by the
definition of the product topology U contains I × J for open sets I and J. Since x ∈ A, I ∩ A , ∅ and likewise J ∩ B , ∅.
Let a ∈ I ∩ A and b ∈ J ∩ B. Then (a, b) ∈ A × B and (a, b) ∈ I × J ⊆ U. Thus U ∩ A × B , ∅. Thus (x, y) ∈ A × B. Thus
A × B ⊇ A× B. Now suppose (x, y) ∈ A × B. Let I be any open set containing x and J any open set containing y. Then I × J is
an open set in X × Y that contains (x, y). Thus ∃ (a, b) ∈ A × B∩ I × J. But then a ∈ I ∩ A , ∅ and b ∈ J ∩ B , ∅. Since I and
J are arbitrary open sets it follows that x ∈ A and y ∈ B. Thus (x, y) ∈ A×B. Thus A × B ⊆ A×B. It follows that A × B = A×B.

2) (A × B)◦ =
◦

A ×
◦

B: (x, y) ∈
◦

A ×
◦

B ⇐⇒ x ∈
◦

A and y ∈
◦

B ⇐⇒ ∃ open sets U ⊆ X and V ⊆ Y such that x ∈ U ⊆ A and
y ∈ V ⊆ B⇐⇒ (x, y) ∈ U ×V ⊆ X × Y for open sets U ⊆ X and V ⊆ Y ⇐⇒ (x, y) ⊆ W ⊆ A× B for some open set W ⊆ X × Y
⇐⇒ (x, y) ∈ (A × B)◦.

3) Fr(A×B) = [Fr(A)×B]∪ [A×Fr(B)]: We first note the following (nearly obvious) fact: (U ∩V)×W = (U ×W)∩ (V ×W).
We will use that fact in the following.

A × B ∩ (A × B)c

= A × B ∩ Ac × B ∪ A × Bc ∪ Ac × Bc

= A × B ∩
(
Ac × B ∪ A × Bc ∪ Ac × Bc

)
(by Chapter 2, Problem 1)

= (A × B) ∩
(
Ac × B ∪ A × Bc ∪ Ac × Bc

)
(by part one of this problem)
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= [(A × B) ∩ (Ac × B)] ∪ [(A × B) ∩ (A × Bc)] ∪ [(A × B) ∩ (Ac × Bc)]

= [(A ∩ Ac) × B] ∪ [A × (B ∩ Bc)] ∪ [(A × B) ∩ (Ac × Bc)] (by the fact stated at the beginning of this proof)

= [Fr(A) × B] ∪ [A × Fr(B)] ∪ [Fr(A) × Fr(B)].

But Fr(A) × Fr(B) ⊆ Fr(A) × B (as well as A × Fr(B)), so this last expression is equal to

[Fr(A) × B] ∪ [A × Fr(B)].

Problem 21. If A and B are compact, and if W is a neighborhood of A × B in X × Y , find a neighborhood U of A in X and a
neighborhood V of B in Y such that U × V ⊆ W.

Solution: We have A × B ⊆ W ⊆ X × Y , where A and B are compact. For each (x, y) ∈ A × B, we know there is a basic open
set Ux ×Vy where x ∈ Ux is open in A and y ∈ Vy is open in Y , and (x, y) ∈ Ux ×Vy ⊆ W. By Theorem 3.15 A× B is compact.
Thus ∃ a finite subset Ux1 × Vy1 , . . . ,Uxn × Vyn of {Ux × Vy | x ∈ A, y ∈ B} such that A × B ⊆ (Ux1 × Vy1 ) ∪ · · · ∪ (Uxn × Vyn ).
Now for each x ∈ A, let Ex = ∩x∈Uxi

Uxi and for y ∈ B let Fy = ∩y∈Vxi
Vxi . In words Ex is the intersection of all of the Uxi that

contain x, and Fy is the intersection of all of the Vyi that contain y. Since there are only a finite number of Uxi and Vyi , Ex × Fy

is open for all (x, y) ∈ A × B and the set {Ex × Fy | x ∈ A, y ∈ B} is a finite set. Let U = ∪Ex and V = ∪Fy. Let (a, b) ∈ A × B.
Then (a, b) ∈ Ea×Fb so A×B ⊆ ∪(x,y)∈A×BEx×Fy = (∪Ex)× (∪Fy) = U ×V . Now for each (x, y) ∈ A×B, ∃ Uxi , Vy j such that
(x, y) ∈ Uxi × Vy j ⊆ W. Thus Ex × Fy ⊆ Uxi × Vy j ⊆ W. Thus Ex × Fy ⊆ W for all (x, y) ∈ A × B. Thus ∪(x,y)∈A×BEx × Fy ⊆ W.
Since ∪(x,y)∈A×BEx × Fy = (∪Ex) × (∪Fy) = U × V , we have shown U × V ⊆ W. Thus U and V have the required properties
A × B ⊆ U × V ⊆ W.

Problem 22. Prove that the product of two second-countable spaces is second-countable and that the product of two separable
spaces is separable.

Fact: First not that if A and B are countable then A× B is countable. Indeed this follows from an argument very similar to the
one for showing Q is countable.

By Chapter 2, Problem 12, page 32, a space is second-countable means it has a countable base. Let α be a countable base
for X and β a countable base for Y . Let γ = {A × B | A ∈ α, B ∈ β}. We claim γ is a base for X × Y . Let (x, y) ∈ X × Y .
Let W be open in X × Y with (x, y) ∈ W. By the definition of the product topology, ∃ open sets U ⊆ X and V ⊆ Y such that
(x, y) ∈ U × V ⊆ W. Since α is a base for X there is an open set A ∈ α such that x ∈ A ⊆ U and since β is a base for Y there is
an open set B ∈ β such that y ∈ B ⊆ V . Now (x, y) ∈ A × B ⊆ U × V ⊆ W. Thus γ is a base for the topology on X × Y . Since
α and β are countable, γ is countable by the Fact stated above.

By Chapter 2, Problem 12, page 32, a space is separable if it has a countable dense subset. Suppose X and Y are separable.
Let A ⊆ X and B ⊆ Y be countable dense subsets. We claim that A × B is a countable dense subset of X × Y . It is countable
by the Fact above. Let (x, y) ∈ X × Y . Let W be an open set contianing (x, y). We must show W ∩ A × B , ∅. We know ∃
open sets U ⊆ X and V ⊆ Y such that (x, y) ∈ U × V ⊆ W. Since A is dense in X there is an a ∈ A ∩ U. Likewise there is a
b ∈ B ∩ V . But then (a, b) ∈ U × V ⊆ W. Thus W ∩ A × B , ∅.

Problem 23. Prove that [0, 1) × [0, 1) is homeomorphic to [0, 1] × [0, 1).

Soluton: We will need the following lemma:
Lemma: Let X,Y be closed in X ∪ Y . If f : X ∪ Y → B is continuous when restricted to X and when restricted to Y , then f is
continuous.
Proof: Let U ⊆ B be open. Then f −1(U) ∩ X and f −1(U) ∩ Y are closed since the intersection of closed sets is closed and f
restricted to X and Y is contiuous. Therefore their union f −1(U) is closed in X ∪ Y . Thus f is continuous.

We will construct three homeomorphisms f , g and h as shown in the following diagram. The composition h ◦ g ◦ f will then
be the desired homeomorphism from X = [0, 1) × [0, 1) to Y = [0, 1] × [0, 1)
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Let Y1 be the shape shown in the top right graph in the figure. The function f : X → Y1 is defined as follows: f (x, y) =

(( 1
2 y + 1

2 )x, y). Then f (x, 1) = (x, 1) so f fixes the top of the square. And f (0, y) = (0, y) so f also fixes the y-axis.
f (x, 0) = ( 1

2 x, 0) so f contracts the x axis by a factor of 1/2. And on any horizontal line between y = 0 and y = 1, f is a
contraction of 1

2 y + 1
2 which implies f is one-to-one and onto, f (X) = Y1. Since f is given by polynomials it is continuous.

The inverse of f is given by (x, y) 7→ (x/( 1
2 y + 1

2 ), y) which is continuous for y > 0. Thus f is a homeomorphism from X to Y1.

Let Y2 be the shape shown in the bottom left graph in the figure. Define g : Y1 → Y2 by (x, y) 7→ (x, y) if x ≤ 1/2 and
(x, y) 7→ (x, y− (2x−1)) if x ≥ 1/2. Note that g fixes the rectangle [0, 1/2]× [0, 1/2). And g takes the right side (y = 2x−1) to
the x-axis. And g takes the line segment y = 1, 1/2 ≤ x ≤ 1 to the line y = 2− 2x. Thus clearly g : Y1 → Y2 is one-to-one and
onto. We have defined g by breaking up the domain into two parts. Since g is given by polynomials, it is continuous on each
part of the domain. Since g agrees on the line x = 1/2, by the lemma proved at the beginning of this problem, g is continuous
on all of Y1. The inverse of g is given by the rule (x, y) 7→ (x, y) if x ≤ 1/2 and (x, y) 7→ (x, y + (2x − 1)), which is given by
polynomials in the components and is therefore continuous.

Let h : Y2 → Y be given by (x, y) 7→ ((y + 1)x, y). Then h is very similar to f and the proof that it is a homeomorphism from
Y2 to Y is nearly identical.

It follows that h ◦ g ◦ f is a homeomorphism from X to Y .

Problem 24. Let x0 ∈ X and y0 ∈ Y . Prove that the functions f : X → X × Y , g : Y → X × Y defined by f (x) = (x, y0),
g(y) = (x0, y) are embeddings (as defined in Problem 14).

Solution: By Theorem 3.13, f is an continuous⇔ p1 ◦ f and p2 ◦ f are continuous. Thus since p1 ◦ f (x) = x (the identity
function) and p2 ◦ f (x) = y0 (a constant function), it follows that f is continuous. Now f is clearly one-to-one and onto its
image f (X) ⊆ X × Y . Note that p1| f (X) is the invese of f on f (X). Since p1 is continuous, it follows that p1| f (X) is continuous
on f (X). Thus f is a homeomorphism. The proof that g is a homeomorphism is basically identical.

Problem 25. Show that the diagonal map ∆ : X → X × X defined by ∆(x) = (x, x) is indeed a map, and check that X is
Hausdorff iff ∆(X) is closed in X × X.

Solution:

We first show ∆ is a map. Let U ⊆ X × X be open. Then ∆−1(U) = p1(U) ∩ p2(U). Since p1(U) and p2(U) are open, ∆−1(U)
is open
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Now suppose X is Hausdorff. Let (x1, x2) < ∆(X). Then x1 , x2. So ∃ U and V such that x1 ∈ U, x2 ∈ V and U ∩ V = ∅. Let
W = U × V . Then (x1, x2) ∈ W. Suppose p ∈ ∆(X) ∩ (U × V). Since p ∈ ∆(X), p = (x, x) for some x. But then (x, x) ∈ U × V
⇒ x ∈ U and x ∈ V which implies U ∩ V , ∅. Thus there can be no p in ∆(X) ∩ (U × V). Thus ∆(X) ∩ (U × V) = ∅. Thus ∀
p < ∆(X) ∃ an open set W s.t. p ∈ W ⊆ ∆(X)c. Thus ∆(X) is closed.

Conversely, suppose ∆(X) is closed in X×X. Let x1, x2 ∈ X with x1 , x2. Since x1 , x2, (x1, x2) < ∆(X). Since ∆(X) is closed,
∃ a basic open set U ×V such that U ×V ⊆ ∆(X)c. This implies (U ×V)∩∆(X) = ∅. Suppose U ∩V , ∅. Then ∃ x ∈ U ∩V .
But that implies (x, x) ∈ U×V , which contradicts the assumption that (U×V)∩∆(X) = ∅. Thus U∩V = ∅. Thus X is Hausdorff.

Problem 26. We know that the projections p1 : X × Y → X, p2 : X × Y → Y are open maps. Are they always closed?

Solution: The projections are not always closed maps. We will prove this with a counter-example. But first we prove the
following lemma we will use to prove the counter-example works:

Lemma: If X is a metric space then C ⊆ X is closed⇐⇒ whenever {cn} is a sequence in C with cn → L, then L ∈ C.
Proof: (⇒): Suppose cn → L and cn ∈ C ∀ n. If L < C then we can put an open ball B of radius ε > 0 centered at L s.t.
B ∩C = ∅. Since cn ∈ C for all n then cn < B for all n >> 0. Thus cn cannot converge to L, a contradiction.
(⇐): Suppose C was not closed. Then ∃ x ∈ Cc s.t. ∀ open sets U with x ∈ U, we have U ∩ C , ∅. For each n let Un be the
open ball centered at x of radius 1/n. Then for each n there is a cn ∈ C s.t. cn ∈ Un ∩ C. But then cn → x and by assumption
x ∈ C, contradicting the choice of x ∈ Cc.

Now, consider the subset C = {(x, y) | y = 1/x} ⊆ E2. We will prove this is closed using the lemma. Suppose {an} is a
sequence in C s.t. an → L. Write an = (xn, yn) and L = (x, y). Then (xn, yn)→ (x, y)⇒ xn → x and yn → y. Thus xn → x and
1/xn → y. Since 1/xn → y ∈ E1, xn cannot converge to zero. Thus 1/xn → 1/x. Thus y = 1/x. Thus (x, y) ∈ C. Thus C must
be closed. But p1(C) = (−∞, 0) ∪ (0,∞) which is not closed (by the lemma again) because 1/n→ 0.

Problem 27. Given a countable number of spaces X1, X2, . . . , a typical point of the product ΠXi will be written x =

(x1, x2, . . . ). The product topology on ΠXi is the smallest topology for which all of the projections pi : ΠXi → Xi, pi(x) = xi,
are continuous. Construct a base for this topology from the open sets of the spaces X1, X2, . . . .

Solution: Define the base β for a topology on ΠXi by β = {∅} ∪ {U1 ×U2 × · · · | Ui ∈ Xi is open, and Ui = Xi for all but finitely
many i}. Clearly ∅ ∈ β and ΠXi ∈ β. It is also obvious that β is closed under finite intersection since ∩α(Aα×B) = (∩αAα)×B.
Now let U ⊆ Xi. Then p−1

i (U) = X1 × · · · × Xi−1 × U × Xi+1 × Xi+2 × · · · ∈ β. Thus pi is continuous. Now suppose B is the
smallest topology for which pi is continuous. Then for U ⊆ Xi, p−1

i (U) = X1 × · · · × Xi−1 ×U × Xi+1 × Xi+2 × · · · must be in B.
Since any element of β is a finite intersection of such sets, it follows that β ⊆ B. Since B is the smallest topology for which pi

is continuous for all i, and the topology generated by β is contained in B, it must be that the topology generated by β equals
B.

Problem 28. If each Xi is a metric space, the topology on Xi being induced by a metric di, prove that

d(x, y) =

∞∑
i=1

1
2i

di(xi, yi)
1 + di(xi, yi)

defines a metric on ΠXi which induces the product topology.

Solution: Since 0 ≤ di(xi,yi)
1+di(xi,yi)

≤ 1, 0 ≤ 1
2i

di(xi,yi)
1+di(xi,yi)

≤ 1
2i . And

∑ 1
2i = 1 so the series converges and is finite for all x, y. No term

of the series is negative, so d(x, y) ≥ 0. And di(xi, yi) = di(yi, xi) for all i, so d(x, y) = d(y, x). Since di(xi, xi) = 0 for all i,
it follows that d(x, x) = 0. Now suppose d(x, y) = 0. Then every term of the series must be zero. Thus di(xi, yi) = 0 for all
i. Thus xi = yi for all i. Thus x = y. Thus we have shown x = y ⇔ d(x) = d(y). It remains to show d satisfies the triangle
inequality. To show this we will use the following lemmas:
Lemma 1: Let a, b, c, d ∈ R with a, b ≥ 0 and c, d > 0. Then b

d ≥
a
c ⇔

a+b
c+d ≥

a
c .

Proof: b
d ≥

a
c ⇔ bc ≥ ad⇔ ac + bc ≥ ac + ad⇔ a+b

c+d ≥
a
c .
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Lemma 2: Let f (x) = x
1+x . Then 0 ≤ a ≤ x + y⇒ f (a) ≤ f (x) + f (y).

Proof: If x = 0 or y = 0 then the statement is equivalent to saying f is an increasing function, which it is. So suppose xy > 0.
Then

f (x) + f (y) =
x

1 + x
+

y
1 + y

=
x(1 + y) + y(1 + x)

(1 + x)(1 + y)
=

x + y + 2xy
1 + x + y + xy

.

This is greater than x+y
1+x+y by Lemma 1 (a = x + y, b = 2xy, c = 1 + x + y, d = xy). Now since f is an increasing function,

x+y
1+x+y ≥

a
1+a . �

Now suppose x, y, z ∈ ΠXi. Then

d(x, y) + d(y, z) =

∞∑
i=1

1
2i

di(xi, yi)
1 + di(xi, yi)

+

∞∑
i=1

1
2i

di(yi, zi)
1 + di(yi, zi)

=

∞∑
i=1

1
2i

(
di(xi, yi)

1 + di(xi, yi)
+

di(yi, zi)
1 + di(yi, zi)

)
Now since di(xi, zi) ≤ di(xi, yi) + di(yi, zi), by Lemma 2 this last expression is

≥

∞∑
i=1

1
2i

di(xi, zi)
1 + di(xi, zi)

= d(x, z).

Thus we have shown d(x, y) + d(y, z) ≥ d(x, z) as required. Thus d is a well-defined metric on ΠiXi.

We next show the metric d on ΠXi induces the product topology. For any x ∈ Xi let Bi(x, ε) be the open ball of radius ε
centered at x and similarly for x ∈ X let B(x, ε) be the open ball of radius ε in X. We know that in each space these open balls
constitute a bases for the metric topology. Let β be the product topology on X and β′ the metric topology on X.

Let A be a finite subset of N. For each i ∈ A let Ui ⊆ Xi be open. Let Yi = Ui for i ∈ A and Yi = Xi for i < A. Let U = ΠiYi.
We know from Problem 27 that sets of this form constitute a base for the product topology on X. Let x = (xi) ∈ U. We will
find an open ball B(x, ε) ⊆ U. From this it will follow that U is open in the metric topology, or in other words that β ⊆ β′.
This will get us half way there.

Since there are only finitely many Ui, and each Ui is open in the metric topology of Xi, there exists δ > 0 such that Bi(xi, δ) ⊆
Ui for all i ∈ A. Without loss of generality we can assume δ < 1. Let N = maxa∈A a. Since A is a finite set, we can choose
ε > 0 such that 2iε

1−2iε
< δ ∀ i ∈ A. We will show B(x, ε) ⊆ U. Since Bi(xi, δ) ⊆ Ui ∀ i ∈ A, it suffices to show the implication

d(x, y) < ε ⇒ yi ∈ Bi(xi, δ) ∀ i ∈ A, or equivalently that d(x, y) < ε ⇒ di(xi, yi) < δ ∀ i ∈ A. Now,

d(x, y) < ε

=⇒
∞∑

i=1

1
2i

di(xi, yi)
1 + di(xi, yi)

< ε

=⇒

1
2i

di(xi, yi)
1 + di(xi, yi)

< ε for all i

=⇒

di(xi, yi) < 2iε(1 + d(xi, yi)) for all i

=⇒

di(xi, yi)(1 − 2iε) < 2iε for all i
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=⇒

di(xi, yi) <
2iε

1 − 2iε
for all i

And since 2iε
1−2iε

< δ ∀ i ∈ A, this implies di(xi, yi) < δ for all i ∈ A. Thus we have finished showing β ⊆ β′, or that the product
topology is contained in the metric topology.

We now show β′ ⊆ β. Let V ∈ β′, the metric topology on X. Let x ∈ V . Then x ∈ B(x, ε) ⊆ V for some ε > 0. We can assume
without loss of generality that ε < 1. Let N be such that

∞∑
i=N+1

1
2i < ε/2.

For each i = 1, . . . ,N let Ui = Bi

(
xi,

ε
2−ε

)
. Let

U = U1 × · · · × UN × XN × XN+1 × · · ·

Then x ∈ U. We claim that y ∈ U ⇒ d(x, y) < ε, which will imply we have found U ∈ β such that x ∈ U ⊆ B(x, ε). It follows
from this that β′ ⊆ β and thus we will have shown that β = β′.

Let y ∈ U. Then

d(x, y) =

∞∑
i=1

1
2i

di(xi, yi)
1 + di(xi, yi)

=

N∑
i=1

1
2i

di(xi, yi)
1 + di(xi, yi)

+

∞∑
i=N+1

1
2i

di(xi, yi)
1 + di(xi, yi)

≤

N∑
i=1

1
2i

di(xi, yi)
1 + di(xi, yi)

+

∞∑
i=N+1

1
2i

≤

N∑
i=1

1
2i

di(xi, yi)
1 + di(xi, yi)

+ ε/2

Now for i ≤ N, y ∈ U implies di(xi, yi) < ε
2−ε . Thus 2di(xi, yi) < ε + εdi(xi, yi), which implies

di(xi, yi)
1 + di(xi, yi)

< ε/2

Therefore
N∑

i=1

1
2i

di(xi, yi)
1 + di(xi, yi)

+ ε/2

≤
ε

2

N∑
i=1

1
2i + ε/2

< ε.

Therefore y ∈ U ⇒ y ∈ B(x, ε). Thus x ∈ U ⊆ V . Thus ∀ x ∈ V , ∃ U ∈ β such that x ∈ U ⊆ V . Thus V ∈ β. Thus β′ ⊆ β.
Thus the two topologies are equal.

Problem 29. The box topology on ΠXi has as base all the sets of the form U1 × U2 × · · · , where Ui is open in Xi. Show that
the box topology contains the product topology, and that the two are equal iff Xi is an indiscrete space for all but finitely many
values of i. (X is an indiscrete space if the only open sets are ∅ and X.)
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Solution: The box topology contains the product topology since by definition of the product topology the open set are ones
of the form U1 ×U2 × · · · , where Ui is open in Xi and Ui = Xi for all but finitely many i. If all but finitely many of the spaces
are indiscrete then the any non-empty set of the form U1 ×U2 × · · · , where Ui is open in Xi necessarily has Ui = Xi for all but
finitely many i.

Section 3.5 - Connectedness

Problems 3.5

Problem 30. Let X be the set of all points in the plane which have at least one rational coordinate. Show that X, with the
induced topology, is a connected space.

Solution: For each r ∈ Q let Xr = {(x, y) | x = r or y = r} and let Ar = {(x, y) | x = r} and Br = {(x, y) | y = r}. Then Ar

and Br are homeomorphic to E1 so by Theorem 3.18 and Corollary 3.22 are connected. Ar ∩ Br = {(r, r)} so Ar and Br are
separated. And Xr = Ar ∪ Br. So by Thoerem 3.25 Xr is connected. Now X =

∑
r∈Q Xr. Since Xr ∩ Xs = {(r, s), (s, r)} if r , s,

no two members of {Xr} are separated from each other. And Xr is connected for each r. Thus by Theorem 3.25 X is connected.

Problem 31. Give the real numbers the finite-complement topology. What are the connected components of the resulting
space? Answer the same question for the half-open interval topology.

Solution: For the finite-complement topology, the entire space is connected, since no set can be both open and closed.

For the half-open interval topology, the space is totally disconnected. Let x < y. Then by Chapter 2, Problem 11 every set
[a, b) is both open and closed. Thus [x, y) contains x and not y, and [x, y) and [x, y)c are both open. Thus x and y are not in the
same connected component. Since x and y are arbitrary, connected components cannot contain more than one point.

Problem 32. If X has only a finite number of components, show that each component is both open and closed. Find a space
none of whose components are open sets.

Solution: X = C1 ∪ · · · ∪ Cn a disjoint union of connected components. By Thereom 3.27 each Ci is closed. Since a finite
union of closed sets is closed, X − Ci = ∪ j,iC j is closed. Thus Ci =

(
∪ j,iC j

)c
is open. The space Q with the natural metric

topology is totally disocnnected, but points in Q are not open sets.

Problem 33. (Intermediate value theorem). If f : [a, b]→ E1 is a map such that f (a) < 0 and f (b) > 0, use the connectedness
of [a, b] to establish the existence of a point c for which f (c) = 0.

Solution: By Theorem 3.19 we know [a, b] is connected. By Theorem 3.21 f ([a, b]) is connected. By Theorem 3.19 again
f ([a, b]) is an interval. Thus f ([a, b]) contains every point between f (a) and f (b). By assumption zero is between f (a) and
f (b). Thus 0 is in the range of f . Thus ∃ c s.t. f (c) = 0.

Problem 34. A space X is locally connected if for each x ∈ X and each neighborhood U of x there is a connected neighbor-
hood V of x which is contained in U. Show that any euclidean space, and therefore any space which is locally euclidean (like
a surface), is locally connected. If X = {0} ∪ {1/n | n = 1, 2, . . . } with the subspace topology from the real line, show that X is
not locally connected.

Solution: Theorems 3.19 and 3.26 imply sets I1×· · ·× In where In is an open interval in E1 are connected. These sets also form
a base for En. It is clear that if X has a base consisting of connected sets then X is locally connected. Local connectedness is
preserved by homeomorphism (see next Problem) thus any space that is locally euclidean is locally connected.

Now suppose X = {0} ∪ {1/n | n = 1, 2, . . . }. Let U be an open set containing 0. Suppose V ⊆ X is a connected open set with
0 ∈ V ⊆ U. Then ∃ n ∈ N such that 1/n ∈ V . Since the only connected sets in E1 are the intervals, it must be that the entire
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interval [0, 1/n] ⊆ V . But V ⊆ X, a countable set, so this is impossible.

Problem 35. Show that local connectedness is perserved by a homeomorphism, but need not be preserved by a continuous
function.

Solution: Suppose X is locally connected and f : X → Y is a homeomorphism. Let U ⊆ Y be open with y ∈ U. Then f −1(U)
is an open neighborhood of f −1(y). So ∃ a connected open set V ⊆ X with f −1(x) ∈ V ⊆ f −1(U). By Theorem 3.21 f (V) is
connected in Y . Since f is a homeomorphism, f (V) is an open neighborhood of y in Y , y ∈ f (V) ⊆ U ⊆ Y . Thus Y is locally
connected.

Let X = {0} ∪ N with the discrete topology. Let Y = {0} ∪ {1/n | n = 1, 2, . . . }. By Problem 34 Y is not locally connected.
Define a function f : X → Y by f (0) = 0 and f (n) = 1/n for n , 0. Since X has the discrete topology and single points are
connected, X is locally connected. Since X has the discrete topology, f is continuous (any function with discrete domain is
continuous). Thus X is locally connected, but its continuous image f (X) is not locally connected.

Problem 36. Show that X is locally connected iff every component of each open subset of X is an open set.

Solution: First suppose every component of each open subset of X is an open set. Let x ∈ X and let U ⊂ X be open with
x ∈ U. Then the components of U are open. Let V be the component of U containing x. Then V is a connected open set with
x ∈ V ⊆ U. Thus X is locally connected. Now suppose X is locally connected. Let U ⊂ X be open. Let C be a connected
component of U. Then for each x ∈ C, there is a connected open set Vx such that x ∈ Vx ⊆ U. Since C is a maximally con-
nected set in U it must be that x ∈ Vx ⊆ C (otherwise by Theorem 3.25 Vx ∪ C would be a connected set properly containing
C). Thus C = ∪x∈CVx, a union of open sets. Thus C is open.

Section 3.6 - Joining points by paths

Problems 3.6

Notes

Page 62 After the proof, two lines after the displayed equations, it says ”It is easy to check that the closure of Z in E2 is X.
Let y ∈ [−1, 1]. Then ∃ w such that sin(w) = y. Thus sin(w + 2πn) = y ∀ n. Thus for xn = π/(w + 2πn), sin(π/xn) = y ∀ n.
Now (xn, sin(π/xn)) ⊆ Z, and (xn, sin(π/xn))→ (0, y), it follows that (0, y) ∈ Z. Y is closed and Z ∩ {(x, y) | x ≥ ε} is closed ∀
ε > 0 it follows that there are no other limit points of Z. It follows that Z = Z ∪ Y .

Problem 37. Show that the continuous image of a path-connected space is path-connected.

Solution: Supposer f : X → Y is onto and X is path-connected. Let y1, y2 ∈ Y . Choose x1 ∈ f −1(y1) and x2 ∈ f −1(y2).
Since X is path-connected, there is a path h : [0, 1] → X s.t. h(0) = x1 and h(1) = x2. Then g = f ◦ h is a path in Y and
g(0) = f (h(0)) = f (x1) = y1 and g(1) = f (h(1)) = f (1) = y2. Thus there is a path connecting y1 to y2 in Y . Thus Y is
path-connected.

Problem 38. Show that S n is path-connected for n > 0.

Solution: Think of S n as the points of unit distance from the origin in En+1. Suppose x, y ∈ S n and x , −y. Define
h : [0, 1]→ S n by

h(t) =
(1 − t)x + ty
||(1 − t)x + ty||

.

Then h(0) = x and h(1) = y. Furthermore since x , −y, the straight line (1 − t)x + ty does not pass through the origin. Thus
(1 − t)x + ty , 0 for all t ∈ [0, 1]. Thus h is a well defined function joining x and y. Now z 7→ ||z|| is continuous function from
En+1 to R, and the ratio of two non-vanishing continuous functions to R is continuous (basic calculus results). It follows that
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h is continuous. Now if x = −y we can choose any point z , x, y and join x to z by a path and then z to y by a path. Thus by
the comments after the proof of Theorem 3.29, we can join x to z by a path.

Problem 39. Prove that the product of two path-connected spaces is path-connected.

Solution: Suppose X and Y are path-connected. Let (x1, y1), (x2, y2) ∈ X×Y . Then ∃maps h1 : [0, 1]→ X and h2 : [0, 1]→ Y
such that h1(0) = x1, h1(1) = x2, h2(0) = y1, h2(1) = y2. Define h : [0, 1]→ X ×Y by h(t) = (h1(t), h2(t)). Then h(0) = (x1, y1)
and h(1) = (x2, y2). By Theorem 3.13 h is continuous. Thus X × Y is path-connected.

Problem 40. If A and B are path-connected subsets of a space, and if A ∩ B is nonempty, prove that A ∪ B is path-connected.

Solution: Let x, y ∈ A∪ B. If x, y ∈ A then since A is path connected x and y can be connected by a path. Likewise if x, y ∈ B.
If x ∈ A and b ∈ B then since A∩B , ∅, ∃ c ∈ A∩B. Since A is path-connected we can connect x to c by a path and since B is
path-connected we can connect c to y by a path. Thus by the comments after the proof of Theorem 3.29, x can be connected
to y by a path. Thus in all cases x can be connected to y by a path. Thus A ∪ B is path-connected.

Problem 41. Find a path-connected subset of a space whose closure is not path-connected.

Solution: Let X be the space defined in the example following Theorem 3.30. Decompose X = Y ∪Z as in the example. Since
Z is the continuous image of (0, 1] it is path-connected by Problem 37. It is shown in the example that Z = X and X is not
path-connected.

Problem 42. Show that any indiscrete space is path-connected.

Solution: Since any function into an indiscrete space X is continuous, we can define any function we want from [0, 1] to X
and it will be continuous. Thus for x, y ∈ X just choose any function [0, 1] → X that sends 0 7→ x and 1 7→ y. Thus X is
path-connected.

Problem 43. A space X is locally path connected if for each x ∈ X, and each neighborhood U of x, there is a path-connected
neighborhood V of x which is contained in U. Is the space shown in Fig. 3.4 locally path-connected? Convert the space
{0} ∪ {1/n | n = 1, 2, . . . } into a subspace of the plane which is path-connected but not locally path-connected.

Solution: The space shown in Fig. 3.4 is not locally path-connected because any open set containing the origin (0, 0) must
contain points from both Y and Z and as shown in the example there are no paths connecting points in Y to points in Z.

Let X0 = {(0, y) | y ∈ [0, 1]}. For each n ∈ N let Xn = {(1/n, y) | y ∈ [0, 1]}. Let Y = {(x, 0) | x ∈ [0, 1]}. Let X = Y ∪
(
∪∞n=0Xn

)
.

Then X is path connected since Y ∩ Xn , ∅ for all n. Let p = (0, 1) and let U be the open ball centered at p of radius 1. Let
V ⊆ U be open. Then V ∩ Y = ∅. So V ∩ X is just a collection of line segments any two of which are separated from each
other. So V ∩ X is not path connected for any open V with p ∈ V ⊆ U. Thus X is not locally path connected. I believe this
space is called the “Comb Space”.

Problem 44. Prove that a space which is connected and locally path-connected is path-connected.

Solution: Let X be connected and locally path-connected. Let x ∈ X. Let E be the path component containing x. Suppose E
were not closed. Then ∃ y ∈ Ec s.t. y ∈ E. Since X is locally path-connected ∃ an open path-connected set V s.t. y ∈ V . Since
y ∈ E, V ∩ E , ∅. Let z ∈ V ∩ E. Then x can be path connected to z since both are in E and z can be path connected to y
since z, y ∈ V . Thus by the comments after the proof of Theorem 3.29, x can be connected to y by a path, contradicting the
assumption that y ∈ Ec. Thus E is closed. Now suppose Ec were not closed. Then ∃ y ∈ E s.t. y ∈ Ec. Since X is locally
path-connected ∃ an open path-connected set V s.t. y ∈ V . Since y ∈ Ec, V ∩ Ec , ∅. Let z ∈ V ∩ Ec. Then x, y can be
connected by a path since both are in E and y, z can be connected by a path since both are in V . Thus x and z can be connected
by a path. Thus z ∈ E contradicting the assumptoin that z ∈ Ec. Thus Ec is closed. Thus E and Ec are both open and both
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closed. By Theorem 3.20 (c), since X is connected and E , ∅, it must be that Ec = ∅. It follows that every point in X can be
connected to x by a path. Thus X is path-connected.
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Chapter 4 - Identification Spaces

Section 4.2 - The identification topology

Notes

Page 66. End of the first paragraph he says “it is easy to check that the identification topology coincides with that induced
from E3. I don’t recall anywhere that the Möbius strip was given as embedded in E3.” In fact in the first paragraph of this sec-
tion he points out that in Chapter 1 he introduced the Möbius informally as an “identification space” - so not as a subset of E3.
Unless he means that since he showed how to construct one out of paper and we live in E3 then it is naturally embedded in E3

in the same way that I am. In any case, I think he means it will be easy to show the topologies are the same once we have The-
orem 4.2 and 4.3. Since it can shown easily using those theorems, I don’t think it’s worth doing here in any more basic manner.

Page 67. Theorem 4.3. It’s worth noting that a closed map is not necessarily an open map and an open map is not necessarily
a closed map.

Page 68. In the torus example he defines the identification map f . It’s worth noting that this is a closed map, but not an open
map.

Page 68. The end of the Bn/S n−1 example he says “The continuity of f is easy to check.” Intuitively it is pretty clear. But I’m
not sure how easy it is to prove rigorously. Any open set in S n that does not contain p clearly has open inverse image since
h1 and h2 are continuous. If an open set in S n contains p then obviously it contains the entire boundary S n−1 in Bn (the whole
boundary maps to p) and since we start with an open neighborhood of p in S n if we remove p we get an open set in S n whose
inverse is open in Bn−S n−1. Adding back S n−1 we should get an entire neighborhood of S n−1. The rigorous proof of this should
be basically the same as that given in Chapter 3, Problem 18 where we show all points far enough from the origin lie in the set.

Page 68. Lemma 4.5. The statement of this lemma should say X must be compact.

Page 69. Comment after the Glueing lemma. It says the lemma is true also if X and Y are open. In this case we could also
allow infinitely many open subsets, not just two. This is not the case for closed subsets.

Page 70. Line 3. He talks about the “disjoint union” without defining it. If X and Y are subspaces of Z we can take the disjoint
union X + Y ≡ {(v, i) ∈ X ∪ Y × {0, 1} | v ∈ x if i = 0, v ∈ Y if i = 1}. And for the disjoint union of infinitely many subspaces
Xα ⊆ X indexed by A we give A the discrete topology, and then ⊕Xα = {(x, α) ∈ X × A | x ∈ Xα}.

Page 70. Theorem 4.8. He says to observe that “F j : ⊕Xα → Z is continuous if and only if each fα is continuous...” But I
believe we only need the “if” part of that to do this proof.

Page 71. Top of page it says the “identification topology gives a space homeomorphic to the nonnegative part of the real
line...”. The thing to note is that ⊕∞i=1[i − 1, i]→ [0,∞) is an identification map.

Page 71. Projective spaces. It says “... theorem (4.2) and corollary (4.4) can be used to show that all three lead to the same
space.” This is done in Problem 1 of this section.

Page 72. At the end of the first paragraph he says he leaves it to “the reader to reconcile this description with those listed in
Projetive spaces’ above”. I’ll have to circle back to this because I’m really not sure right now what he has in mind or how to
do this. (XXX)

Page 72. At the end of the text he says “We invite the reader to check that the corresponding identification space is an in-
discrete space.” This follows from the fact that given any open interval I ⊆ R and any real number x ∈ R, ∃ r ∈ Q such that
x − r ∈ I. An open set in the identification space must contain (the classes of) an open interval of real numbers and therefore
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by what was said in the previous sentence, it must contain every real number.

Problem 1. Check that the three descriptions (a), (b), (c) of Pn listed in ’Projective spaces’ above do all lead to the same space.

Solution: Let X be the space in (a), Y the space in (b) and Z the space in (c).

We first show Y is homeomorphic to X. Let h : En+1 − {0} → Y be the identification map. Let i : S n → En+1 be the natural
embedding. Define g : S n → Y by g(x) = h ◦ i(x). Then g is continuous with compact domain. And Y is Hausdorff because
given x, y ∈ Y , x , y, ∃ x′, y′ ∈ En+1 such that h(x′) = x and h(y′) = y. Then x′ , ±y′. Thus ∃ open sets U,V ⊆ En+1 such that
x′ ∈ U, y′ ∈ V , and U ∩ ±V = ∅. Thus x ∈ h(U), y ∈ h(V) and h(U) ∩ h(V) = ∅. By Corollary 4.4 g is an identification map.
Since g identifies x and −x, the identification space is exactly X.

We next show Z is homeomorphic to X. Embed i : Bn ↪→ S n as the northern hemisphere {(xi) | xn ≥ 0}. Let h : S n → X be
the identification map. Then h ◦ i is a map from a compact space Bn to a Hausdorff space Pn. Thus by Corollary 4.4 h ◦ i is an
identification map. Note that h ◦ i identifies antipodal points on the boundary of Bn and does not identify points in the interior
to any other points. Thus h ◦ i induces a homeomorphsm from Z to X.

Problem 2. Which space do we obtain if we take a Möbius strip and identify its boundary circle to a point?

Solution: We obtain the projective plane P2. To see this, let R be a rectangle as in Fig. 4.1 (page 66). Instead of first identifying
the right and left edges to get a Möbius and then collapsing the boundary circle, we first collapse the top and bottom borders
to two points a and b, then identify the (image of) the right and left edges as they would have been identified to form a Möbius
from R. This operation identifies the two points a and b. So after these two identifications we end up with the same space.
So by this argument we can do the identifications in the opposite order. Proceeding in this way, we first collapse the top
horizontal border to one point and the bottom border to another point. From this identification we get a space homeomorphic
to a disc D. The identification map f : R→ D can be seen as taking the left border of R to the left semi-circle of the boundary
of D and the right border to the right semi-circle of the boundary of D. Then we follow f with the identification map from D
to P2 given in Problem 1 above. The result is an identification map from D to P2 that (since it identifies antipodal points on
the boundary) identifies the same two points on the two boundary semicircles that came from two points in R that would be
identified if we formed the Möbius first. Thus the identification space is homeomorphic to the image P2.

Problem 3. Let f : X → Y be an identification map, let A be a subspace of X, and give f (A) the induced topology from Y .
Show that the restriction f |A : A→ f (A) need not be an identification map.

Solution: Let X = [0, 1] and Y = S 1 ⊆ C. Let f : X → Y be given by x 7→ e2πix. Then by Corollary 4.4, f is an identification
map because X is compact and Y is Hausdorff. Let A = [0, 1). Then f |A(A) = Y . But f |A does not identify any points. Thus
if f |A were an identification map it would (by Theorem 4.2) induce a homeomorphism from A to Y . But we know f is not a
homeomorphism (see Section 1.4, Example 3, page 14).

Problem 4. With the terminology of Problem 3, show that if A is open in X and if f takes open sets to open sets, or if A is
closed in X and f takes closed sets to closed sets, then f |A : A→ f (A) is an identification map.

Solution: In the first case f |A is an open map and in the second case f |A is a closed map. In either case it follows from
Theorem 4.3 that f is an identification map.

Problem 5. Let X denote the union of the circles [x − (1/n)]2 + y2 = (1/n)2, n = 1, 2, 3, . . . , with the subspace topology from
the plane, and let Y denote the identification space obtained from the real line by identifying all the integers to a single point.
Show that X and Y are not homeomorphic. (X is called the Hawaiian earring.

Solution: The space X is compact. To see this suppose {Uα} is an open cover. Then some Uα1 contains the origin (0, 0).
U then contains all of the circles [x − (1/n)]2 + y2 = (1/n)2 for n >> 0. And Uc is homeomorphic to finitely many closed
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intervals which is compact. Thus {Uα} has a finite subcover. Now consider the open sets Un = (n + 1/10, n − 1/10) for each
n ∈ Z. And let V = (−1/5, 1/5). Then the image of the open sets {Uα} ∪ {V} in Y form an open cover and for each n ∈ Z,
(2n + 1)/2 is in one and only one Uα. Thus there cannot be a finite subcover.

Problem 6. Give an example of an identification map which is neither open or closed.

Sollution: Let f : [0, 3π) → S 1 be given by x 7→ eix. Then f wraps the interval one and a half times around the circle. Let
U ⊆ S 1. Suppose f −1(U) is open. Let y ∈ U. Then either f −1(y) = {a} or f −1(y) = {a, b}. In the first case a ∈ [π, 2π). Since
f −1(U) is open, and [π, 2π) is in the interior (in E1) of the interval [0, 3π), there exists an open (in E1) interval (c, d) such that
a ∈ (c, d) ⊆ f −1(U). But then f ((c, d)) is an open arc of S 1 such that y ∈ f ((c, d)) ⊆ U. Thus y is in the interior of U. Now
suppose f −1(y) = {a, b}. Then wlog assume a ∈ [0, π) and b ∈ [2π, 3π). It follows that there is an interval (in E1) (c, d) such
that b ∈ (c, d) ⊆ f −1(U) and therefore y = f (b) ∈ f ((c, d)) ⊆ U. Thus, as before, y is in the interior of U. Thus in all cases if
f −1(U) is open and y ∈ U then y is in the interior of U. It follows that f −1(U) open⇒ U is open. Thus f is an identification
map. Now [0, π) is open in [0, 3π) but f ([0, π)) is not open in S 1 since it contains the point z = 1 but does not contain any
points with im(z) < 0. Thus f is not an open map. Similarly, [2π, 3π) is closed in [0, 3π) but f ([2π, 3π)) is not closed in S 1

since it does not contain z = −1 but it does contain all other points with im(z) ≥ 0. Thus f is not a closed map either.

Problem 7. Describe each of the following spaces: (a) the cylinder with each of its boundary circles identified to a point;
(b) the torus with the subset consisting of a meridianal and a longitudinal circle identified to a point; (c) S 2 with the equator
identified to a point; (d) E2 with each of the circles centre the origin and of integer radius identified to a point.

Solution:

(a) This space is homeomorphic to S 2. Consider the cylinder as X = S 1 × [−1, 1] in E3. Define f : X → S 2 by
(x, y, z) 7→ (rx, ry, z) where r =

√
(1 − z2)/(x2 + y2). Since x2 + y2 never vanishes on X, this is a continuous function.

Since X is compact and S 2 is Hausdorff, by Corollary 4.4 f is an identification map. Note that f identifies all points where
z = 1 to the north pole of S 2 and all the points where z = −1 to the south pole. All other points are identified only with
themselves. Thus the cylinder with its boundary circles identified to points is homeomorphic to S 2, the image of f .

(b) The identification space is S 2. Let Z be the torus with a meridianal and a longitudian identified to a point. Let
X = [0, 1] × [0, 1]. If for each x ∈ (0, 1) we identify (x, 0) with (x, 1) and for each y ∈ (0, 1) we identify (0, y) with
(1, y). And we identify the four points (0, 0), (0, 1), (1, 0), (1, 1). Then the identification space is the torus (see example on
page 68). Identifying the image in the torus of (x, 0) for all x to one point and the image of (0, y) for all y to one point, then
we’ll obtain the space Z. If we do all of the identifying at once, then we obtain the square X with its perimeter identified to
a single point. By Chapter 2, Problem 21 (page 36) X is homeomorphic to the unit disc. By the example “The identification
space Bn/S n−1” (pages 68-69) the unit dic with its boundary identified to a point is homeomorphic to S 2.

(c) Let X be S 2 with the equator identified to a point. Let f : S 2 → X be the identification map. For n = 1, 2 let Cn

be the sphere in E3 of radius 1/2 centered at (n, 0, 0). Let Y = C1 ∪ C2. Then Y is two copies of S 2 joined at the point
(3/2, 0, 0). We will show X is homeomorphic to Y . Let H1 = {(x, y, z) ∈ S 2 | z ≥ 0} (the northern hemisphere), and let
H2 = {(x, y, z) ∈ S 2 | z ≤ 0} (the southern hemisphere). Then S 2 = H1 ∪ H2. Let E = H1 ∩ H2 the equator of S 2. Then
H1/E and H2/E can be though of as subspaces of S 2/E. Thus X = H1/E ∪ H2/E. Note that H1 is homeomorphic to the
closed unit disc B2 (project H1 to the x-y plane). By the example “The identification space Bn/S n−1” (on pages 68-69), B2

with its boundary identified to a point is homeomorphic to S 2. Thus there is a homeomorphism h1 from H1/E to C1. By
Chapter 1, Problem 13 (page 23) we can choose h1 so that it sends the point f (E) ∈ H1/E to (3/2, 0, 0) in C1. Likewise there
is a homeomorphism h2 from H2/E to C2 that takes f (E) ∈ H2/E to (3/2, 0, 0). Since f −1( f (E)) = E, and E is closed in
S 2, it follows (from the fact that X has the identification topology) that f (E) is closed in X. By the Glueing lemma (4.6) the
homeomorphisms h1 and h2 join to a continuous, one-to-one and onto function h from X to C1 ∪ C2 = Y . Since h restricted
to H1/E is a homeomorphism, it is a closed map. Similarly h restricted to H2/E is a closed map. Since f −1( f (Hi)) = Hi,
i = 1, 2, and Hi is closed in S 2, it follows that f (Hi) = Hi/E are closed in X. Since both H1/E and H2/E are closed in X, it
follows that h itself is a closed map. Thus h−1 is continuous. Thus h gives a homeomorphism between X and C.
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(d) Let X be E2 with each of the circles centred at the origin and of integer radius identified to a point. For each n ∈ N let Cn

be the sphere in E3 of radius 1/2 centered at (n, 0, 0). Let Y = ∪n∈NCn. Then X is homeomorphic to Y .

Solution: Let X be the space in question and let f : E2 → X be the identification map. For each n ∈ N let An = {p ∈ E2 |

n − 1 ≤ ‖p‖ ≤ n}. For n > 1, An is an annulus, so homeomorphic to a cylinder. And A0 is exactly the closed unit disc. The
image of A0 in X is A0 with its boundary circle identified to a point. We know, by the example “The identification space
Bn/S n−1” (on pages 68-69), that A0 with its boundary identified to a point is homeomorphic to S 2. Likewise, we know by part
(a) of this problem that for n > 0, the image of An in X is homeomorphic to S 2. Now the image of An in X shares exactly one
point with An−1 and exactly one point with An, when n > 0 and A0 shares exactly one point with A1. Thus X is homeomorphic
to a countable sequence of spheres each connected to the next by one point. This is exactly the space Y .

Problem 8. Let X be a compact Hausdorff space. Show that the cone on X is homeomorphic to the one-point compactification
of X × [0, 1). If A is closed in X, show that X/A is homeomorphic to the one-point compactification of X − A.

Solution: Since {1} is compact in [0, 1] and X is compact, by Theorem 3.15 X×{1} is compact in X× [0, 1]. Since X and [0, 1]
are Hausdorff, by Theorem 3.14 X × [0, 1] is Hausdorff. Thus X × {1} is a compact subset of a Hausdorff space. By Theorem
3.6 it follows that X × {1} is closed in X × [0, 1]. Thus the first part follows from the second.

So suppose A is closed in X. Let Y = X − A∪ {∞} be the one-point compactification of X − A. Let P be the image of A in X/A
under the identification map of i : X → X/A. Define a map h : X/A→ Y by x 7→ x if x ∈ X − A and P 7→ ∞. We will show h
is a homeomorphism. We first show h is continuous. By Theorem 4.1 it suffices to show h ◦ i is continuous. Let U be an open
set in Y . If∞ < U then U ⊆ X−A and (h◦ i)−1(U) = U ⊆ X is open. Now if∞ ∈ U then Uc is compact in X−A. By Theorem
3.6 Uc is closed in X. Thus (h ◦ i)−1(Uc) is a closed subset of X (it is just Uc itself, under the various identifications). Thus
(h ◦ i)−1(U) is an open subset of X. Thus (h ◦ i)−1(U) is open in every case. Thus h is continuous. By Chapter 3, Problem 17
Y is Hausdorff. By Theorem 3.4 X/A is compact since it is the continuous image of X under the identification map i. Thus h
is a continuous map from a compact space to a Hausdorff space. And h is clearly one-to-one and onto. Thus by Theorem 3.7
h is a homeomorphism.

Problem 9. Let f : X → X′ be a continuous function and suppose we have partitions P, P′ of X and X′ respectively, such that
if two points of X lie in the same member of P, their images under f lie in the same member of P′. If Y , Y ′ are the identifi-
cation spaces given by these partitions, show that f induces a map f̂ : Y → Y ′ and that if f is an identification map then so is f̂ .

Solution: Let i be the identification map from X to Y and i′ the identification map from X′ to Y ′. The condition on f says that
if P ∈ P, then ∃ P′ ∈ P′ such that f (P) ⊆ P′. Thus the function f̂ : Y → Y ′ defined by f̂ (i(P)) = i′( f (P)) is well-defined.
We just need to show that f̂ is continuous. By Theorem 4.1 it suffices to show f̂ ◦ i is continuous. Notice that the following
diagram is commutative:

X
f
→ X′

i ↓ ↓ i′

Y
f̂
→ Y ′

Let U ⊆ Y ′ be open. Then by the commutativity of the diagram, ( f̂ ◦ i)−1(U) = (i′ ◦ f )−1(U) Since f and i′ are continuous, it
follows that ( f̂ ◦ i)−1(U) is open in X.

Now suppose f is an identification map. Let U ⊆ Y ′ be such that f̂ −1(U) is open. Then i−1( f −1(U)) is open in X. Now
f −1(i′−1(U)) = i−1( f −1(U)). Thus f −1(i′−1(U)) is open. Thus since f is an identification map, i′−1(U) is open in X′. Since i′

is an identification map, U is therefore open in Y ′.

Problem 10. Let S 2 be the unit sphere in E3 and define f : S 2 → E4 by f (x, y, z) = (x2 − y2, xy, xz, yz). Show that f induces
an embedding of the projective plane in E4 (embeddings were defined in Problem 14 of Chapter 3).
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Solution: Let X = im( f ) ⊆ E4. Since E4 is Hausdorff and a subspace of a Hausdorff space is Hausdorff, X is Hausdorff. And
S 2 is compact. Thus by Corollary 4.4 f : S 2 → X is an identification map. By the example “Projective spaces (a)” on page
71, P2 is S 2 with antipodal points identified. Thus by Theorem 4.2 (a) we will be done if we show f identifies antipodal points
(and no others). It clearly does identify antipodal points, f (x, y, z) = f (−x,−y,−z). So suppose f (x1, y1, z1) = f (x2, y2, z2).
We must show (x1, y1, z1) = (x2, y2, z2) or (x1, y1, z1) = (−x2,−y2,−z2). We have

x2
1 − y2

1 = x2
2 − y2

2 (1)

x1y1 = x2y2 (2)

x1z1 = x2z2 (3)

y1z1 = y2z2 (4)

From (3) and (4) it follows that
(x2

1 − y2
1)z2

1 = (x2
2 − y2

2)z2
2 (5)

case 1: x2
1 − y2

1 , 0.

Combining (1) and (5) we get z2
1 = z2

2. Thus z1 = ±z2. If z1 = z2 then

case a: z1 , 0. Then (3) and (4) imply x1 = x2 and y1 = y2. If z1 = −z2 then (3) and (4) imply x1 = −x2 and y1 = −y2.
Thus either (x1, y1, z1) = (x2, y2, z2) or (x1, y1, z1) = (−x1,−y1,−z1).

case b: z1 = 0. Then x2
1 + y2

1 = 1. So one of x1 or y1 must be different from zero. Assume wlog that x1 , 0. Now
x2

1 + y2
1 = 1 = x2

2 + y2
2 together with (1) implies 2x2

1 = 2x2
2. Thus x1 = ±x2. If x1 = x2 then (2) implies y1 = y2, thus

(x1, y1, z1) = (x2, y2, z2). If x1 = −x2 then (2) implies y1 = −y2, thus (x1, y1, z1) = (−x2,−y2,−z2).

case 2: x2
1 − y2

1 = 0.

Suppose x1 = 0. Then y1 = 0, and combining (1) and (2) it follows that x2 = 0 and y2 = 0. Now if x1 = y1 = 0 then
necessarily z1 = ±1. Likewise z2 = ±1. Thus in this case either (x1, y1, z1) = (x2, y2, z2) or (x1, y1, z1) = (−x1,−y1,−z1). By
symmetry, the same thing happens if y1 = 0, x2 = 0 or y2 = 0.

Therefore we have reduced to the case that none of x1, x2, y1, y2 are zero. By assumption x1 = ±y1 and from (1) it follows that
x2 = ±y2. It then follows from (2) that x1 = ±x2.

case a: x1 = x2. Then (2) implies y1 = y2 and (4) implies z1 = z2. Thus (x1, y1, z1) = (x2, y2, z2).

case b: x1 = −x2. Then (2) implies y1 = −y2 and (4) implies z1 = −z2. Thus (x1, y1, z1) = (−x2,−y2,−z2).

Problem 11. Show that the function f : [0, 2π] × [0, π]→ E5 defined by f (x, y) = (cos x, cos 2y, sin 2y, sin x cos y, sin x sin y)
induces an embedding of the Klein bottle in E5.

Solution: Let Y = [0, 2π] × [0, π]. Let X = im( f ) ⊆ E5. Since E5 is Hausdorff and a subspace of a Hausdorff space is
Hausdorff, X is Hausdorff. And [0, 2π] × [0, π] is compact. Thus by Corollary 4.4 f : Y → X is an identification map. We
know the Klein bottle can be obtained from Y by identifying two opposite edges in the same orientation and the other two in
the opposite orientation (see Figure 1.12, page 10).

First note that f identifies all four corners of Y together. So in what follows we will examine what happens to all of the other
points.

Suppose f (x1, y1) = f (x2, y2). First suppose y1 , y2 and assume y1, y2 ∈ (0, π). Inspection of the graph of sin(x) tells us
that if sin 2y1 = sin 2y2 then one of two cases hold: (i) 0 < 2y1, 2y2 < π and 2y1 = π − 2y2 or (ii) π < 2y1, 2y2 < 2π and
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2y1 = 3π − 2y2. Now cos(2y1) = cos(2y2) implies 2y1 = 2π − 2y2, or equivalently y1 = π − y2. But this is incompatible
with both (i) and (ii). Thus if we continue to assume y1 , y2, it must be that at least one of y1 or y2 equals zero or π. Since
y1 = π − y2, if y1 = 0 then y2 = π and conversely. Thus we have shown that if f (x1, y1) = f (x2, y2) and y1 , y2 then one of
(x1, y1) or (x2, y2) must be on the top side and the other on the bottom side. In other words {y1, y2} equals {0, π}. We need to
examine what happens to the x-coordinate of such points.

So suppose f (a, 0) = f (b, π). And suppose 0 < a, b < 2π. We have cos a = cos b and sin a = − sin b (from the first and
fourth coordinates of f ). From cos a = cos b we know that either a = b or a = 2π − b. From sin a = − sin b we know that
the only one of these that is possible is a = 2π − b (keep in mind we are assuming here that a and b are strictly between
0 and 2π). Thus the points where f (x1, y1) = f (x2, y2) with y1 , y2 and x1, x2 ∈ (0, 2π) are exactly the points of the form
((x1, y1), (x2, y2)) = ((x, 0), (2π − x, π)) for some x ∈ (0, 2π). The only other points on the top or bottom sides are the corner
points which we have already handled.

Suppose now that y1 = y2, and assume x1 , x2. Assume y1, y2 ∈ (0, π). We know from the first coordinate of f (x1, y1) =

f (x2, y2) that cos x1 = cos x2. Since x1 , x2, this holds only if x1 = 2π − x2. Now from the fifth coordinate of f (x1, y1) =

f (x2, y2) we also know sin x1 = sin x2 (substitute y2 = y1 and then we can cancel sin y1 from both sides since we are assuming
y1 ∈ (0, π)), which together with x1 = 2π − x2 implies − sin x2 = sin x2, which implies sin x2 = 0. Thus x2 = 0 or x2 = π. We
do not need to further evaluate the y-coordinates of such points since in this case we have assumed y1 = y2. Thus f identifies
points on the opposite vertical sides at the same vertical height to each other. The only other points on the left or right sides
are the corner points which we have already handled.

In summary we have shown that any points that f identifies to each other must lie on the boundary of the square; and that f
identifies the four corners of the square to one point; and f identifies points on the top and bottom sides in pairs, where the
point with x-coordinate x on the top is identified with the point with x-coordinate 2π− x on the bottom; and finally f identifies
points on the left and right sides in pairs, where points with the same y-coordinate are identified to each other.

It follows that the identification space is the Klein bottle.

Problem 12. With the notation of Problem 11, show that if (2 + cos x) cos 2y = (2 + cos x′) cos 2y′ and (2 + cos x) sin 2y =

(2+cos x′) sin 2y′, then cos x = cos x′, cos 2y = cos 2y′, and sin 2y = sin 2y′. Deduce that the function g : [0, 2π]×[0, π]→ E4

given by g(x, y) = ((2 + cos x) cos 2y, (2 + cos x) sin 2y, sin x cos y, sin x sin y) induces an embedding of the Klein bottle in E4.

Solution: Suppose that
(2 + cos x) cos 2y = (2 + cos x′) cos 2y′ (1)

(2 + cos x) sin 2y = (2 + cos x′) sin 2y′ (2)

We want to show
cos x = cos x′ (3)

cos 2y = cos 2y′ (4)

sin 2y = sin 2y′ (5)

case 1: {y, y′} ∩ {π/4, 3π/4} = ∅. Then cos 2y , 0 and cos 2y′ , 0. Thus we can divide (2) by (1) to get tan 2y = tan 2y′. Since
y, y′ ∈ [0, π], the only way this is possible is if y = y′ or (wlog) 2y = 2y′ + π. If y = y′ + π/2 then cos(2y) = − cos(2y′). But
then (1) canont hold (remember {y, y′} ∩ {π/4, 3π/4} = ∅). Thus y = y′, from which (4) and (5) obviously hold and it follows
immediately from (1) or (2) that (3) holds.

case 2: {y, y′} ∩ {π/4, 3π/4} , ∅. If y = π/4, then (1) implies y′ = π/4 or y′ = 3π/4. But if y′ = 3π/4 then (2) does not hold.
So it must be y = y′ = π/4. Then (4) and (5) hold and (2) implies (3). If on the other hand y = 3π/4, then as before (1) implies
y′ = π/4 or y′ = 3π/4. But if y′ = π/4 then (2) does not hold. So it must be that y = y′ = 3π/4. Then (4) and (5) hold and (2)
implies (3).
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Now let f be the function defined in Problem 11. Then g is an identification map for the same reasons f is. And it follows
from what we just proved above that g(x1, y1) = g(x2, y2) ⇔ f (x1, y1) = f (x2, y2). Thus the identification space for g is the
same as the identification space for f . Thus the image of g is homeomorphic to the Klein bottle.

Section 4.3 - The identification topology

Notes

Page 77 At the end of the first paragraph it asks “How many components has GL(n)?” The answer is two. But as far as I know
there’s no real easy way to prove this. It is a full page proof, Theorem 3.68, p.131 in Warner’s ”Foundations of differentiable
Manifolds and Lie Groups”.

Page 77 In the last paragraph we are told to check four statements about the quaternions. The quaternions are homeomorphic
to E4. Multiplication and inversion in the quaternions is given by polynomials and rational functions in the coordinates. Thus
it is easy to see that it is a topological group. We are asked to check that conjugation induces a rotation on the subspace of pure
quaternions, and that this gives a homomorphism, onto, continuous to SO(3). The fact that it induces a rotation is non-trivial,
it is detailed on the wikipedia page on the quaternions. I don’t know what Armstrong has in mind exactly when he asks us
to check that. But it also follows from the proof that it is onto. For the rest of the details I refer to the wikipedia quaternion
page. The fact that it is a homomorphism just follows from the fact that multiplication in the quaternions is associative. To
see it is continuous, if qn → q is a convergent sequence of quaternions converging to a quaternion, then conjugation by qn

must converge to conjugation by q because all of the coordinates of the transformation are given by rational functions that
don’t have vanishing denominators on the non-zero quaternions. The kernel of the map is R − {0} because those are exactly
the quaternions that commute with all other quaternions. Thus conjugating by them induce the trivial rotation.

Problem 13. Show that the product of two topological groups is a topological group.

Solution: Let G1 and G2 be two topologial groups with multiplication functions m1 and m2 respectively and inverse functions
i1 and i2 respectively. Let G = G1 × G2. Then the multiplication map m : G × G → G is given by by m((g1, g2), (g′1, g

′
2)) =

(m1(g1, g2),m2(g′1, g
′
2)) and the inverse map i : G → G is given by i(g1, g2) = (i1(g1), i2(g2)). By Theorem 3.14 G is Hausdorff.

We just need to show m and i are continuous. These facts both follow from the following:

Lemma: Let f1 : X1 → Y1 and f2 : X2 → Y2 be continuous functions. Then the function ( f1 × f2) : X1 × X2 → Y1 × Y2 given
by ( f1 × f2)(x1, x2) = ( f1(x1), f2(x2)) is continuous.

Proof: Let U1 ×U2 be a basic open set in Y1 × Y2. Then ( f1 × f2)−1(U1 ×U2) = f −1
1 (U1) × f −1

2 (U2) which is open in X1 × X2.

Problem 14. Let G be a topological group. If H is a subgroup of G, show that its closure H̄ is also a subgroup, and that if H
is normal then so is H̄.

Solution:

Define f : G ×G → G by f (x, y) = xy−1. Since G is a topological group f is continuous. Therefore f −1(H̄) is closed. Since
H is a subgroup, H × H ⊆ f −1(H̄). So, taking closures H × H ⊆ f −1(H̄). Now by Chapter 3, Problem 20, H × H = H̄ × H̄.
Thus f (H̄ × H̄) ⊆ H̄. It follows that H̄ is a subgroup of G.

Define f : G×G → G by f (x, y) = xyx−1. Since G is a topological group f is continuous. Therefore f −1(H̄) is closed. Since H
is normal, G×H ⊆ f −1(H̄). So, taking closures G × H ⊆ f −1(H̄). Again by Chapter 3, Problem 20, G × H = Ḡ× H̄ = G× H̄.
Thus f (G × H̄) ⊆ H̄. It follows that H̄ is a normal subgroup of G.

Problem 15. Let G be a compact Hausdorff space which has the structure of a group. Show that G is a topological group if
the multiplication function m : G ×G → G is continuous.
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Solution: We must show that i : x 7→ x−1 is continuous. Let C ⊆ G be closed. We will show i−1(C) is closed. Let e ∈ G be the
identity element. Since m is continuous and points are closed, m−1({e}) is closed. Let π1 be the projection map from G ×G to
G. We claim π1 is a closed map. If A ⊆ G ×G is closed, then by Theorem 3.15 G ×G is compact, so by Theorem 3.4 π1(A) is
compact. And since G is Hausdorff, by Theorem 3.6 π1(A) is closed. Thus π1((G ×C) ∩ m−1({e})) = i−1(C) is a closed set.

Problem 16. Prove that O(n) is homeomorphic to SO(n) × Z2. Are these two isomorphic as topological groups?

Solution: Let M ∈ O(n). We know from the proof of Theorem 3.12 that det : O(n)→ Z2 is continuous. And since det(MN) =

det(M)det(N), it is a homomorphism. Since SO(n) = det−1(1), SO(n) is open in O(n). Define f : O(n) → SO(n) × Z2 by
M → (det(M) · M, det(M)). Then f is a well-defined homomorphism that is clearly one-to-one and onto. Let U ⊆ SO(n)
be open. Since SO(n) is open in O(n), U is open in O(n). Let −U = {−M | M ∈ U}, which is also open in O(n). Then
f −1(U × {0}) = U and f −1(U × {1}) = −U. Thus f −1(V) is open for all basic open sets V ∈ SO(n) × Z2. Thus f is continuous.
By Theorem 3.7 f is a homeomorphism.

Problem 17. Let A, B be compact subsets of a topological group. Show that the product set AB = {ab | a ∈ A, b ∈ B} is
compact.

Solution: The multiplication map m : G × G → G is continuous. By Theorem 3.15 A × B is compact. By Theorem 3.4
m(A × B) = AB is compact.

Problem 18. If U is a neighborhood of e in a topological group, show there is a neighborhood V of e for which VV−1 ⊆ U.

Solution: Let f : G ×G → G be given by f (x, y) = xy−1. Then f −1(U) is an open neighborhood of (e, e). Thus ∃ a basic open
set V × V such that (e, e) ∈ V × V ⊆ f −1(U). It follows that VV−1 = f (V × V) ⊆ U.

Problem 19. Let H be a discrete subgroup of a topological group G (i.e. H is a subgroup, and is a discrete space when given
the subspace topology). Find a neighborhood N of e in G such that the translates hN = Lh(N), h ∈ H, are all disjoint.

Solution: Let U ⊆ G be open such that U ∩ H = {e}. By Problem 18 ∃ N ⊆ G open such that NN−1 ⊆ U. Suppose h1, h2 ∈ H
and h1N ∩ h2N , ∅. Then ∃ v1, v2 ∈ V such that h1v1 = h2v2. This implies v1v−1

2 = h−1
1 h2. Thus h−1

1 h2 ∈ U ∩ H. But
U ∩ H = {e}. Thus h−1

1 h2 = e. Thus h1 = h2.

Problem 20. If C is a compact subset of a topological group G, and if H is a discrete subgroup of G, show that H∩C is finite.

Solution: We first prove the following:

Lemma: If G is a topological group and H is a discrete subgroup, then H is a closed subset of G.

Proof: Let f : G × G → G be given by f (a, b) = ab−1. Since G is a topological group f is continuous. Since H is discrete
∃ a set U open in G such that U ∩ H = {e}, where e is the identity element of G. Then f −1(U) is open and (x, x) ∈ f −1(U).
Thus ∃ a set V open in G such thta (x, x) ∈ V × V ⊆ f −1(U). Suppose a, b ∈ V ∩ H. Then f ((a, b)) = ab−1 ∈ U ∩ H. Thus
ab−1 = e. Thus a = b. Thus V ∩ H has at most one element. Thus V ∩ H = ∅ or V ∩ H = {y}. Let W = V − {y}. Since x < H,
x , y. Thus x ∈ W. Since G is Hausdorff, {y} is closed (Theorem 3.6, single points are compact sets). Thus W is open. Thus
we have found an open set W such that x ∈ W and W ∩ H = ∅. �

Now by the lemma H is closed, thus H ∩ C is closed in C. By Theorem 3.5 H ∩ C is compact. Since H is discrete, points in
H are open. Thus the sets consisting of individual points in C ∩ H constitute an open cover of C ∩ H that has no subcover.
Thus C ∩ H must be a finite set of points.

Problem 21. Prove that every nontrivial discrete subgroup of R is infinite cyclic.
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Solution: Let H be a non-trivial discrete subgroup of R. Then ∃ h ∈ H, h , 0. Thus one of h,−h is positive. Let
A = {x ∈ H | x > 0}. Then A is not empty. Let a = inf A. By the lemma in the previous problem H is closed in G. Thus a ∈ H.
Thus < a>⊆ H. Since H is discrete, ∃ ε > 0 such that (−ε, ε) ∩ H = {0}. Thus a > 0. Suppose b ∈ H and b << a >. Then
∃ n ∈ N such that na < b < (n+1)a. But then 0 < b−na < a and b−na ∈ H contradicting the definition of a. Thus H =< a >.

Problem 22. Prove that every non-trivial discrete subgroup of the circle is finite and cyclic.

Solution: Let S 1 = {z ∈ C | |z| = 1}. Let H ⊆ S 1 be a non-trivial discrete subgroup. Let A = {θ ∈ (0, 2π) | eiθ ∈ H}. Since
∃ h ∈ H, h , 1, A is not empty. Let θ = inf A. By the lemma in the Problem 20, H is closed in G. Thus eiθ ∈ H. Thus
< eiθ >⊆ H. Since H is discrete, ∃ ε > 0 such that (−ε, ε) ∩ A = ∅. Thus θ > 0. Suppose b ∈ H and eiφ << eiθ >. Then ∃
n ∈ N such that nθ < φ < (n+1)θ. But then 0 < φ−nθ < θ and ei(φ−nθ) ∈ H contradicting the definition of θ. Thus H =< eiθ >.

Problem 23. Let A, B ∈ O(2) and suppose det A = +1, det B = −1. Show that B2 = I and BAB−1 = A−1. Deduce that every
discrete subgroup of O(2) is either cyclic or dihedral.

Solution: Let B =

[
a b
c d

]
. Then the conditions BBT = I and det B = −1 amount to the following four equations:

ad − bc = −1 (1)

a2 + b2 = 1 (2)

c2 + d2 = 1 (3)

ac + bd = 0 (4)

Suppose a = 0. Then by (4) bd = 0 and since B is non-singular it must be that d = 0 (and likewise if d = 0 we must have

a = 0). We then have b2 = c2 = 1. This gives two possibilities for B,
[

0 1
1 0

]
and

[
0 −1
−1 0

]
. In both cases B2 = I.

Suppose b = 0. Then by (4) ac = 0 and since B is non-singular it must be that c = 0 (and likewise if c = 0 we must have

b = 0). Thus a2 = d2 = 1. This gives two possibilities for B,
[

1 0
0 −1

]
and

[
−1 0
0 1

]
. In both cases B2 = I.

By the above we can assume a, b, c, d , 0.

Now B2 =

[
a2 + bc ab + bd
ac + dc bc + d2

]
. Thus we want to show

a2 + bc = 1 (5)

ab + bd = 0 (6)

ac + dc = 0 (7)

bc + d2 = 1 (8)

From (4) we have c = −bd
a . Substituting into (1) we get ad + b2d

a = −1. Thus a2d + b2d = −a, which implies (a2 + b2)d = −a.
Using (2) we get d = −a. Substituting for −a for d into (1) we get a2 + bc = 1, which is (5). And substituting −d for a into
(1) we get d2 + bc = 1 which is (8).

From (4) we have d = −ac
b . Substituting into (1) we get −a2c

b − bc = −1 which implies c(a2 + b2) = b and thus c = b. Thus
substiuting b for c in (4) we get ab + bd = 0, which is (6). And substituting c for b in (4) we get ac + cd = 0 which is (7).
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Thus in all cases if det B = −1 and BBT = I, we have B2 = I. We have shown in particular that B =

[
a b
b −a

]
where

a2 + b2 = 1.

Now suppose A =

[
a b
c d

]
. Then the conditions AAT = I and det A = 1 amount to the following four equations:

ad − bc = 1 (9)

a2 + b2 = 1 (10)

c2 + d2 = 1 (11)

ac + bd = 0 (12)

As before, c = 0⇔ b = 0 and a = 0⇔ d = 0. It follows that the only cases where one of a, b, c or d is zero are
[

1 0
0 1

]
,[

−1 0
0 −1

]
,
[

0 1
−1 0

]
and

[
0 −1
1 0

]
.

By the above we can assume a, b, c, d , 0. Solving (12) for a and substituting into (1) we get b = −c. Solving (12) for b and

substituting into (1) we get a = d. Thus A is of the form
[

a b
−b a

]
where a2 + b2 = 1. And A−1 =

[
a −b
b a

]
And we can write B =

[
x y
y −x

]
with x2 + y2 = 1.

Multiplying out we get

BAB−1 =

[
x y
y −x

] [
a b
−b a

] [
x y
y −x

]
=

[
x y
y −x

] [
ax + by ay − bx
−bx + ay −by − ax

]
=

[
ax2 + bxy − bxy + ay2 axy − bx2 − by2 − ayx
axy + by2 + bx2 − axy ay2 − bxy + bxy + ax2

]
=

[
a −b
b a

]
= A−1

It remains to show every discrete subgroup of O(2) is cyclic or dihedral. Let H be a discrete subgroup of O(2). By Theorem
4.13 O(2) is compact. Therefore, by Problem 20 we know H is finite. If every element of H has determinant equal to one,
then H is a subgroup of SO(2). By the note after Theorem 4.13 we know that SO(2) is homeomorphic to S 1 and by Problem
22 we know every discrete subgroup of S 1 is cyclic. Thus suppose ∃ B ∈ H such that det B = −1. We must show H is dihedral.

Let K = H ∩ SO(2). Then K is cyclic and consists of the elements of H with determinant equal to one. Let M be a generator
of K. Let N be a element of H − K. Then det N = −1. Since N2 = I and NMN−1 = M−1, the subgroup <M,N > generated
by N and M is dihedral. Thus we will be done if we show H =< M,N >. Suppose L ∈ H − < M,N >. Then L < K thus
det L = −1. Then det LMN = 1. Thus LMN ∈ K. Say LMN = R ∈ K. Then L = RN−1M−1 ∈ H. This contradicts the choice
of L. Thus H − <M,N>= ∅. Thus H =<M,N> is dihedral.

Problem 24. If T is an automorphism of the topological group R (i.e., T is a homeomorphism which is also a group isomor-
phism) show that T (r) = rT (1) for any rational number r. Deduce that T (x) = xT (1) for any real number x, and hence that
the automorphism group of R is isomorphic to R × Z2.

Solution:
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Let A = Aut R, the automorphism group of R. Let n ∈ N. It follows immediately from the fact that T is a homomor-
phism that T (nx) = nT (x). Also T (0) = T (0 + 0) = T (0) + T (0). Thus T (0) = 0. Thus T (0 · 1) = 0T (1) (both sides
are zero). Also 0 = T (0) = T (x − x) = T (x) + T (−x). Thus T (−x) = −T (x). Therefore T (−nx) = −nT (x). Now
T (1) = T (n 1

n ) = T (
∑n

i=1
1
n ) =

∑n
i=1 T ( 1

n ) = nT ( 1
n ). Thus T ( 1

n ) = 1
n T (1). Thus T ( n

m ) = nT ( 1
m ) = n

m T (1). Thus T (r) = rT (1)
for all r ∈ Q. Now let x ∈ R. Since Q is dense in R, ∃ a sequence of rational numbers rn → x. Since T is continuous,
T (rn)→ T (x). But T (rn) = rnT (1)→ xT (1). Thus T (x) = xT (1).

It follows that every automorphism of R is determined completely by its value at x = 1. As long as x , 0, then y
T
7→ yx is an au-

tomorphism of R such that T (1) = x. Thus the correspondence T 7→ T (1) gives a well-defined onto function f : A→ R− {0}.
If we define an operation on A given by composition of functions, then A is a group. And R − {0} is a group with respect to
multiplication. Clearly f (xy) = f (x) f (y). Thus A is isomophic as a group to R − {0}. We will be done if we show R − {0} is
isomorphic to R×Z2. Let R+ = {x ∈ R | x > 0}. Then R+ is a group with respect to the multiplication operation and x 7→ ex is
an isomorphism from R (as a group with respect to the addition operation) to R+ (as a group with respect to the multiplication
operation). Let g : R × Z2 → R − {0} be given by g(x, y) = ex if y = 0 and −ex if y = 1. Now R × Z2 is a group with respect
to addition and R − {0} is a group with respect to multiplication. Thus g is a homomorphism. And g is one-to-one and onto.
Therefore g is an isomorphism.

Problem 25. Show that the automorphism group of the circle is isomorphic to Z2.

Solution: Let f : S 1 → S 1 be an automorphism. Let a = eiθ and b = eiφ in S 1 where 0 ≤ θ ≤ φ ≤ 2π. Let Ia,b = {eix | θ ≤ x ≤
φ}. In words Ia,b is the closed segment of the circle going counter-clockwise from a to b. So for example I1,−1 is the upper
half of the circle {z ∈ S 1 | im z ≥ 0}, and I−1,1 is the lower half of the circle {z ∈ S 1 | im z ≤ 0}. By the intermediate value
theorem and the fact that f is one-to-one, it must be that

f (Ia,b) = I f (a), f (b) or f (Ia,b) = I f (b), f (a) (1)

Let n ∈ N. There are exactly n solutions to the equation xn − 1 = 0 in C, called n-th roots of unity, evenly spaced around the
circle. If zn = 1 then 1 = zn = zn. Thus the conjugate of an n-th root of unity is another n-th root of unity. We will prove
by induction on n that for every root of unity z, f (z) = z, or for every root of unity f (z) = z. Precisely let the statement S (n) be:

f (z) = z ∀ n-th roots of unity z and for consecutive n-th roots of unity a and b, f (Ia,b) = Ia,b

or
f (z) = z ∀ n-th roots of unity z and for consecutive n-th roots of unity a and b, f (Ia,b) = Ia,b.

Base case n = 2. The square roots of unity are ±1. Since f is a homomorphism of groups f (1) = 1. Since (−1)2 = 1,
1 = f (1) = f ((−1)2) = ( f (−1))2 Thus f (−1) = ±1. Since f (1) = 1 it cannot be that also f (−1) = 1, thus f (−1) = −1. Thus f
fixes 1 and −1. Then by (1) f (I1,−1) = I1,−1 or f (I1,−1) = I−1,1. The base case n = 2 therefore is true.

Assume S (m) is true ∀ m < n. Let z be an n-th root of unity. Then zn = 1, so 1 = f (zn) = ( f (z))n. Thus f (z) is also an n-th
root of unity. Let a, b ∈ S 1 be consective (n − 1)-st roots of unity. Then there is one and only one n-th root of unity z ∈ Ia,b.
By the induction hypothesis f either fixes a and b or sends them to their (respective) conjugates. If it fixes a and b then, also
by the induction hypothesis, f (Ia,b) = Ia,b. Thus the only n-th root of unity in f (Ia,b) is z. Since f (z) ∈ Ia,b must be an n-th
root of unity, it must be that f (z) = z. If f sends a and b to their conjugates, then f (Ia,b) = Ia,b = Ib,a and b, a are consecutive
(n − 1)-st roots of unity, thus Ib,a also contains one and only one n-th root of unity, z. Since f (z) ∈ Ib,a must be an n-th root of
unity, it follows that f (z) = z. Thus we have shown that f either fixes all of the n-th roots of unity or sends them all to their
conjugates. The required behavior of f on the intervals between consecutive n-th roots of unity follows from (1).

Thus we have shown that f fixes all of the roots of unity. The roots of unity correspond to the rational numbers in [0, 1] under
the map x 7→ e2πix. Thus the roots of unity are dense in S 1. Therefore if f fixes all of the roots of unity, and f is continuous,
then f must be the identity function. And if f sends all roots of unity to their conjugates, then f must send all elements of S 1

to their conjugates. Thus the identity function and conjugation are the only two possibilities for f .
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Section 4.4 - Orbit Spaces

Notes

Page 79 The top of the page it says without proof that O(n) × S n−1 → S n−1 given by (A, x) 7→ Ax is continuous. This is
continuous since both O(n) and S n−1 are subsets of euclidean space and the function (A, x) 7→ Ax is given by polynomials in
the coordinates.

Page 82 The first line of the page it says “one easily checks that f −1(x) is precisely the left coset of AO(n−1), where A ∈ O(n)
satisfies A(e1) = x. Clearly A is in f −1(x). And since everything in O(n − 1) fixes e1, it is clear everything in the coset has the
same effect on x. On the other hand, if B(e1) = x then A−1B fixes e1 and is thus in O(n − 1). Thus B ∈ AO(n − 1).

Page 82 At the end of the first paragraph it says “a similar argument gives SO(n)/SO(n−1) � S n−1. The main issue is that we
have to show there is an element A ∈ SO(n) such that A(e1) = x. We know there is such an A in O(n). If det A = 1 then we’re
done, otherwise let M be the element of O(n) that sends e2 to −e2 and fixes all other ei’s. Then det M = −1 and M ∈ SO(n)
and det AM = (−1)(−1) = 1. Thus AM ∈ SO(n) and AM(e1) = x. The rest of the proof is identical then to the SO(n) case.

Page 83 Last line of first paragraph. It says “which is clearly impossible.” I think it should say “which only happens when
r = s.

Page 83 At the end of example 7 it says “we leave it to the reader to check for himself that the orbit is a proper dense subset
of T .

We first show {m + n
√

2 | n,m ∈ Z} is dense in R. Let x ∈ R and ε > 0. Find n ∈ N such that 1
n < ε. For each i = 1, 2, . . . , n + 1

find mi ∈ Z such that 0 < mi + i
√

2 < 1. We have strict inequalities because if mi + i
√

2 were 0 or 1 then
√

2 would be rational.
Let A = {mi | i = 1, 2, . . . , n + 1}. Now by the pigeon hole principle, there must be some j ∈ {0, 1, . . . , n − 1} such that the
interval ( j

n ,
j+1
n ) contains two elements a, b ∈ A. Assume wlog that b < a. Then 0 < a − b < 1

n < ε and a − b is of the form
m + n

√
2. Thus multiples of (a− b) cannot skip over an interval of length ε. Thus k(a− b) must be in the interval (x− ε, x + ε)

for some k ∈ Z.

Now let I = [0, 1] and let (x, y) ∈ I × I. We must show ∃ r ∈ R and k, ` ∈ Z such that ‖(r, r
√

2) − (x + k, y + `)‖ < ε. Find
n,m ∈ Z such that |(x

√
2 − y) − (m + n

√
2)| < ε. Then let r = x − n, k = −n, ` = m. Then

‖(r, r
√

2) − (x + k, y + `)‖

= ‖(x − n, (x − n)
√

2) − (x − n, y + m)‖

= |(x
√

2 − y) − (m + n
√

2)| < ε

Page 83 Example 8, bottom of page. Here is talks about “isometries” of the plane. Those are functions that preserve distances
d(a, b) = d( f (a), f (b)).

Page 84 The second sentence of the last paragraph says ”We assume as known the fact that an isometry can be written as an
ordered pair (θ, v) where θ ∈ O(2) and v ∈ E2.” I’m not sure why he didn’t include the proof of this fact, I found the following
elementary proof of it on math.stackexchange.com:

For a ∈ E2 let Ta(y) = y + a. Let P be an isometry of the plane. Let P(0) = x. Then define U = T−x ◦ P. Note that
U(0) = 0 and U is an isometry. Now by the isometry definition, ‖U(y)‖ = d(U(y),U(0)) = d(y, 0) = ‖y‖. We see that
since an isometry preserves triangles, that U(x + y) = U(x) + U(y), and clearly aU(x) = U(ax). Thus our map U is a lin-
ear transformation. Now consider the image of (1, 0). Since it lies on the unit circle (points of norm 1), its image does to,
and thus U(1, 0) = (cos(θ), sin(θ)). Likewise U(0, 1) = (cos(φ), sin(φ)). Now we note that since isometries preserve angles,
|θ − φ| = π/2. Now either we have that φ = θ + π/2, and we can see that U is rotation by θ, or φ = θ − π/2 and we can see that
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it is the product of a reflection and then rotation by θ. Now multiplying U by Tx to get P, we have the desired result.

Page 85 In the second to last paragraph of the section he claims a certain set is a convex polygon. I don’t know why he
omitted the proof but for any points p and q, {x ∈ R2 | ‖x − p‖ ≤ ‖x − q‖} is a halfplane (or the whole plane if p = q), so
the set is an intersection of halfplanes, hence a convex. The fact that it’s bounded follows from the assumption that E2/G is
compact. Thus it is a polygon.

Problem 26. Give an action of Z on E1 × [0, 1] which has the Möbius strip as orbit space.

Solution Let z ∈ Z. The define z(x, y) = (x + z, y) if z is even and z(x, y) = (x + z, 1 − y) is z is odd. Equivalently
z(x, y) = (x + z, 1

2 ((−1)z(2y − 1) + 1)). Then the set [0, 1] × [0, 1] has representatives from every orbit, and (0, y) is iden-
tified with (1, 1 − y). The resulting orbit space is therefore the mobius strip.

Problem 27. Find an action of Z2 on the torus with orbit space the cylinder.

Solution: Represent the torus in E3 as in Figure 4.3 (page 80). Using the notation of example 3 on page 81, define
g(x, y, z) = (x,−y, z). Reflection through the x-z-plane. Let A = {(x, y, z) ∈ T | y ≥ 0}. Then A is one-to-one with the
orbits. Unlike the cases in example 3, no point on the boundary of A is identified with any other point on the boundary of
A (or any other point in A for that matter). Thus A is homeomorphic to orbit space and it is obviously homeomorphic to the
cylinder.

Problem 28. Describe the orbits of the natural action of SO(n) on En as a group of linear transformations, and identify the
orbit space.

Solution: Let r ∈ R, r ≥ 0. Let S r = {p ∈ En | ‖p‖ = r}. Then since SO(n) preserves distances, SO(n) must take S r to itself.
Furthermore, the action on S r is transitive, because it is transitive on S n−1 ⊆ En and S r = r · S n−1. To see the action on S n−1 is
transitive, for any vector v ∈ S n−1, it can be put into an orthnormal basis B. Then there is a change of coordinates matrix M
from the standard basis e1, . . . , en to B that takes e1 to v. Since both bases are orthnormal, M ∈ O(n). Clearly M can be chosen
to be in SO(n) such that M(e1) = v (if it’s not already in SO(n), just multiply one of the other ei’s by −1). Since any element
of S n−1 can be taken to e1, the action must be transitive. Now if v ∈ En is arbitrary (v , 0) then just scale v to be in S n−1,
transform within S n−1 and scale back. The two scaling operations assure that the resulting transformation has determinant
equal to one, and therefore is in SO(n).

Now let r, r′ ∈ R, r, r′ > 0, r , r′. Since things in SO(n) are length preserving, an element of SO(n) cannot take an element
of S r to an element of S r′ . Thus each S r is exactly one orbit (true also if r = 0 since S 0 consists of one point).

Let f : En → [0,∞) be given by f (v) = ‖v‖. Then f is a continuous function that identifies each orbit of the action to a single
point. Let B be an open ball in En. Then clearly f (B) is an interval, open in [0,∞). Since functions respect unions, it follows
that f is an open map. By Corollary 4.4 f is an identification map. Thus the identification space is homeomorphic to the
image of f , which is [0,∞). Thus the orbit space of SO(n) on En is homeomorphic to [0,∞).

Problem 29. If π : X → X/G is the natural identification map, and if O is open in X, show that π−1(π(O)) is the union of the
sets g(O) where g ∈ G. Deduce that π takes open sets to open sets. Does π always take closed sets to closed sets?

Solution: For the first part we don’t need to use the fact that O is open, so for the first part assume O is an arbitrary subset of X.

Let a ∈ O and g ∈ G. Since ga is in the same orbit as a, π(ga) = π(a). Thus π(g(O)) = π(O) ∀ g ∈ G. Thus g(O) ⊆ π−1(π(O))
∀ g ∈ G. Thus ∪g∈Gg(O) ⊆ π−1(π(O)). Now suppose x ∈ π−1(π(O)). Then π(x) ∈ π(O). Thus x is in the same orbit as
some element of O. Thus x = ga for some g ∈ G and a ∈ O. Thus x ∈ g(O). Thus π−1(π(O)) ⊆ ∪g∈Gg(O). Since we have
containment in both directions, we can conclude that π−1(π(O)) = ∪g∈Gg(O).
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Now suppose O is open in X. Recall a set U ⊆ X/G is open in X/G⇔ π−1(U) is open in X. Now π−1(π(O)) is a union of sets
of the form g(O) and (since each g induces a homeomorphism of X) g(O) is open in X ∀ g ∈ G. Thus π−1(π(O)) is open. Thus
π(O) is open in X/G. Thus π is an open map.

We will show by counter-example that π is not a closed map. Let Z act on R by translation x 7→ x + z. The orbit space is S 1.
For each n = 0, 1, 2, . . . , let An = [n + 1

n+3 , n + 1
n+2 ]. So

A0 = [1/3, 1/2]

A1 = [1 +
1
4
, 1 +

1
3

]

A2 = [2 +
1
5
, 2 +

1
4

]

etc . . .

Let A = ∪nAn. Then A is closed in E1, but π(A) = π((0, 1/2]) which is not a closed subset of S 1, since (considering S 1 ⊆ C)
it does not contain z = 1, but it contains all points with im z < 0.

Problem 30. Show that X may be Hausdorff yet X/G non-Hausdorff. If X is a compact topological group and G is a closed
subgroup acting on X by left translation, show that X/G is Hausdorff.

Solution: Let X = R and G = Q. Let G act on X by translations (see example 4 on page 81). Let π be the identification map.
For A ⊆ X let A = π(A). Then Q represents exactly one subset of the partition, so Q is a single point in X/G. Now suppose
U ⊆ X/G is an open set. Then π−1(U) is open in X. So there is an open interval (a, b) ⊆ X such that (a, b) ⊆ π−1(U). Now
Q ∩ (a, b) , ∅. Thus Q ∈ U. Thus every open set in X/G contains the point Q. It follows that every pair of open sets in X/G
have non-empty intersection. Thus X/G cannot be Hausdorff.

Now suppose G is a closed subgroup acting by translations. We will show X/G is Hausdorff.

Note: I don’t think we need X to be compact for this. I have the following proof that does not require compactness. Maybe
there’s a mistake but I can’t find one.

Let C = {(x, y) ∈ X × X | x−1y ∈ G}. Let h : X × X → X be the map h(x, y) = x−1y. Then h−1(G) = C. Since G is closed
and h is continuous, it follows that C is closed. Let f : X → X/G be the identification map. Let g : X × X → X/G × X/G
be the map g(x, y) = ( f (x), f (y)). By Problem 29 f is an open map. It follows that g is an open map. Thus by Theorem 4.3
g is an identification map. Let ∆ be the diagonal in X/G × X/G. Then g−1(∆) = C. Since g is an identification map and C is
closed in X×X, it follows that ∆ is closed in X/G×X/G. By Chapter 3, Problem 25 (page 55) it follows that X/G is Hausdorff.

Problem 31. The stabilizer of a point x ∈ X consists of those elements g ∈ G for which g(x) = x. Show that the stabilizer of
any point is a closed subgroup of G when X is Hausdorff, and that points in the same orbit have conjugate stabilizers for any X.

Note: In the 1987 edition X was not required to be Hausdorff. But this was a mistake, one can construct a counter-example.
For example R acting on R/Q by translation. The stabilizer of Q is Q which is not closed in R. Note that R/Q is not Hausdorff
(see Problem 30).

Solution: If g and g′ are in the stabilizer of x, then gg′x = gx = x so gg′ is in the stabilizer of x. And g−1gx = 1 · x = x, but
also g−1gx = g−1x. Thus g−1x = x so g−1 is in the stabilizer of x. It follows that the stabilizer of x is a subgroup of G. Now, let
f : G → X be given by f (g) = gx. Then f is continuous. Since X is Hausdorff, by Theorem 3.6 points are closed (finite sets
are always compact). Thus f −1(x) is closed in X. But f −1(x) is exactly the stabilizer of x. Thus the stabilizer of x is closed in X.

It remains to show points in the same orbit have conjugate stabilizers. Let x, y be in the same orbit, so x = gy for some
g ∈ G. Let a ∈ stab(x). Then g−1agy = g−1ax = g−1x = y. Thus g−1ag ∈ stab(y). Thus g−1stab(x)g ⊆ stab(y). Now let
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a ∈ stab(y). Then gag−1x = gay = gy = x so gag−1 ∈ stab(x). Thus stab(y) ⊆ g−1stab(x)g. Since we have set containment in
both directions it follows that g−1stab(x)g = stab(y).

Problem 32. If G is compact, X is Hausdorff, and G acts transitively on X, show that X is homeomorphic to the orbit space
G/(stabilizer of x) for any x ∈ X.

Solution: Let x ∈ X. Let f : G → X be given by f (g) = gx. Since G acts transitively, f is onto. Since G is compact and X is
Hausdorff, f is an identification map (Corollary 4.4). So G∗, the identification space associated to f , is homeomorphic to X.
Suppose f (g1) = f (g2). Then g−1

2 g1 is in the stabilizer of x. Thus g1 is in the same coset as g2 with respect to the subgroup
(stabilizer of x). Thus G∗ is exactly G/(stabilizer of x).

Problem 33. Let p, q be integers which have highest common factor 1. Let P be a regular polygonal region in the plane with
center of gravity at the origin and vertices a0, a1, . . . , ap−1, and let X be the solid double pyramid formed from P by joining
each of its points by straight lines to the points b0 = (0, 0, 1) and bq = (0, 0,−1) of E3 (see Fig. 4.6). Identify the triangles
with vertices ai, ai+1, b0, and ai+q, ai+q+1, bq for each i = 1, . . . , p − 1, in such a way that ai is identified to ai+q, ai+1 to ai+q+1,
and b0 to bq. (The subscripts i + 1, i + q, i + q + 1 are course read mod p.) Prove that the resulting space is homeomorphic to
the Lens space L(p, q).

Solution: First off, I think there’s a problem with this description when p = 2. But regardless, I’m stumped. I found the
following proof online (credit to Mariano Surez-Alvarez), however I don’t understand it too well. I’ve ordered a book where
apparently the proof can be found, I will update this if I find a proof with more details. For now I’ll call this a sketch.

Sketch of Proof: The sphere can be identified with

S 3 = {(z,w) ∈ C2 : |z|2 + |w|2 = 1},

and the action of a generator of Zp is then given by

(z,w) 7→ (λz, λqw)

with λ a primitive pth root of unity.

The orbit of each point of S 3 has a point (z,w) such that the argument of z is in [0, 2π/p]. Consider the subset L of S 3 of
such points. If you look at it correctly, you will see it is a (curved) bipiramid, whose central vertical axis is the curve of
points of the form (z, 0) with z of modulus 1. Moreover, it is easy to see that the lens space can be obtained from L by doing
identifications along its boundary, which is the set of points of the form (z,w) in S 3 with z of argument either 0 or 2π/p.

If you work out exactly what identifications are induced by the action of the group, you will find the alternate.

Problem 34. Show that L(2, 1) is homeomorphic to P3. If p divides q − q′, prove that L(p, q) is homeomorphic to L(p, q′).

Solution: Using the definition of L(2, 1) on page 82, L(2, 1) is an identification space of S 3, the orbit space under the action
of Z2. The action of the generator of Z2 is the homeomorphism (z0, z1) 7→ (eπiz0, eπiz1) = (−z0,−z1). And (−z0,−z1) is the
antipodal point to (z0, z1). Thus by example 2 on page 80, the identification space is exactly P3.

Now suppose p|(q−q′). Then q = q′+np for some n ∈ N. Thus e2πqi/p = e2π(q′+np)i/p = e2πq′i/p+2πnpi/p = e2πq′i/pe2πni = e2πq′i/p.
Thus the action of Zp is identical in both cases. Thus the resulting orbit spaces are identical (and therefore homeomorphic).
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Chapter 5 - The Fundamental Group
Section 5.1 - Homotopic maps

Problem 1. Let C denote the unit circle in the plane. Suppose f : C → C is a map which is not homotopoic to the identity.
Prove that f (x) = −x for some point x of C.

Solution: C is just S 1. Suppose that f (x) , −x ∀ x. We can apply the homotopy of example 2, page 89 to f and g(x) = x.
The assumption imples f (x) and g(x) = x are never antipodal. It follows that f and g are homotopic. But by assumption f is
not homotopic to the identity. Thus there must be at least one x such that f (x) = −x.

Problem 2. With C as above, show that the map which takes each point of C to the point diametrically opposite is homotopic
to the identity.

Solution: Let f (x) = −x. Then f is the same as rotating the circle 180◦. So we just need to parameterize rotation by t ∈ [0, 1]
so that t = 0 is a rotation of 180◦ and t = 1 is a rotation of 0◦. Rotation of θ radians is given by multiplying by the rotation ma-

trix
[

cos θ − sin θ
sin θ cos θ

]
. Let F : C×I → C be given by F((x, y), t) = (x cos(π(1−t))−y sin(π(1−t)), x sin(π(1−t))+y cos(π(1−t)).

Then F is the desired homotopy.

Problem 3. Let D be the disc bounded by C, parametrize D using polar coordinates, and let h : D → D be the homeo-
morphism defined by h(0) = 0, h(r, θ) = (r, θ + 2πr). Find a homotopy F from h to the identity map such that the functions
F|D×{t}D × {t} → D, 0 ≤ t ≤ 1, are all homeomorphisms.

Solution: Let i(r, θ) = (r, θ) the identity map. Define F : D × I → D by F((r, θ), t) = (r, θ + 2πr(1 − t)). F is given by
polynomials in r, θ and t, so F is continuous. And F((r, θ), 0) = h(r, θ) and F((r, θ), 1) = (r, θ) = i(r, θ). Thus F is a homotopy
between h and i. Since F|D×{t} → D is a one-to-one continuous map from a compact space to a Hausdorff space, Theorem 3.7
implies that F|D×{t} → D is a homeomorphism.

Problem 4. With the terminology of Problem 3, show that h is homotopic to the identity map relative to C.

Solution: The map h rotates the circle of radius r by 2πr radians. So h(1, θ) acts as the identity on C. The homo-
topy we gave in Problem 3 does not fix C for all t, we will have to find a different one. Define F : D × I → D by
F((r, θ), t) = (r, θ + 2πr1−t). Since t ∈ [0, 1] this is a continuous function of r, θ and t. Then F((r, θ), 0) = (r, θ + 2πr) = h(r, θ)
and F((r, θ), 1) = (r, θ + 2π) = (r, θ). So F((r, θ), 1) is the identity function as a function of r and θ. Finally, note that
F((1, θ), t) = (1, θ + 2π) = (1, θ). So F fixes C for all values of t.

Problem 5. Let f : X → S n be a map which is not onto. Prove that f is null homotopoic, that is to say f is homotopic to a
map which takes all of X to a single point of S n.

Solution: Let p be a point in S n such that its antipodal point −p is not in the image of f . Now let g : X → S n be the constant
function g(x) = p. Then g(x) and f (x) never give a pair of antipodal points for any x ∈ X. By example 2 on page 89, f and g
are homotopic.

Problem 6. As usual, CY denotes the cone on Y . Show that any two maps f , g : X → CY are homotopic.

Solution:


